scholarly journals Possibilistic response surfaces: incorporating fuzzy thresholds into bottom-up flood vulnerability analysis

2021 ◽  
Vol 25 (12) ◽  
pp. 6421-6435
Author(s):  
Thibaut Lachaut ◽  
Amaury Tilmant

Abstract. Several alternatives have been proposed to shift the paradigms of water management under uncertainty from predictive to decision-centric. An often-mentioned tool is the response surface mapping system performance with a large sample of future hydroclimatic conditions through a stress test. Dividing this exposure space between acceptable and unacceptable states requires a criterion of acceptable performance defined by a threshold. In practice, however, stakeholders and decision-makers may be confronted with ambiguous objectives for which the acceptability threshold is not clearly defined (crisp). To accommodate such situations, this paper integrates fuzzy thresholds to the response surface tool. Such integration is not straightforward when response surfaces also have their own irreducible uncertainty from the limited number of descriptors and the stochasticity of hydroclimatic conditions. Incorporating fuzzy thresholds, therefore, requires articulating categories of imperfect knowledge that are different in nature, i.e., the irreducible uncertainty of the response itself relative to the variables that describe change and the ambiguity of the acceptability threshold. We, thus, propose possibilistic surfaces to assess flood vulnerability with fuzzy acceptability thresholds. An adaptation of the logistic regression for fuzzy set theory combines the probability of an acceptable outcome and the ambiguity of the acceptability criterion within a single possibility measure. We use the flood-prone reservoir system of the Upper Saint François River basin in Canada as a case study to illustrate the proposed approach. Results show how a fuzzy threshold can be quantitatively integrated when generating a response surface and how ignoring it might lead to different decisions. This study suggests that further conceptual developments could link the reliance on acceptability thresholds in bottom-up assessment frameworks with the current uses of fuzzy set theory.

2021 ◽  
Author(s):  
Thibaut Lachaut ◽  
Amaury Tilmant

Abstract. Several alternatives have been proposed to shift the paradigms of water management under uncertainty from predictive to decision-centric. An often-mentioned tool is the stress-test response surface, mapping system performance to a large sample of future hydro-climatic conditions. Dividing this exposure space between acceptable and unacceptable states requires a criterion of acceptable performance defined by a threshold. In practice, however, stakeholders and decision-makers may be confronted with ambiguous objectives for which the the acceptability threshold is not clearly defined (crisp). To accommodate such situations, this paper integrates fuzzy thresholds to the response surface tool. Such integration is not straightforward when response surfaces also have their own irreducible uncertainty, from the limited number of descriptors and the stochasticity of hydro-climatic conditions. Incorporating fuzzy thresholds therefore requires articulating uncertainties that are different in nature: the irreducible uncertainty of the response itself relative to the variables that describe change, and the ambiguity of the acceptability threshold. We thus propose possibilistic surfaces to assess flood vulnerability with fuzzy acceptability thresholds. An adaptation of the logistic regression for fuzzy set theory combines the probability of acceptable outcome and the ambiguity of the acceptability criterion within a single possibility measure. We use the flood-prone reservoir system of the Upper Saint-François River Basin in Canada as a case study to illustrate the proposed approach. Results show how a fuzzy threshold can be quantitatively integrated when generating a response surface, and how ignoring it might lead to different decisions. This study suggests that further theoretical development should link the decision-making under deep uncertainty framework with the existing experience of fuzzy set theory, notably for hydro-climatic vulnerability analysis.


2020 ◽  
Author(s):  
Thibaut Lachaut ◽  
Amaury Tilmant

Abstract. Several alternatives have been proposed to shift the paradigms of water management under uncertainty from predictive to decision-centric. An often mentioned tool is the stress-test response surface; mapping system performance to a large sample of future hydro-climatic conditions. Dividing this exposure space between success and failure requires clear performance targets. In practice, however, stakeholders and decision-makers may be confronted with ambiguous objectives for which there are no clearly-defined (crisp) performance thresholds. Furthermore, response surfaces can be non-deterministic, as they do not fully capture all possible sources of hydro-climatic uncertainty. The challenge is thus to combine two different types of uncertainty: the irreducible uncertainty of the response itself relative to the variables that describe change, and the fuzziness of the performance target. We propose possibilistic surfaces to assess flood vulnerability with fuzzy performance thresholds. Three approaches are tested and compared on a un-gridded sample of the exposure space: (i) an aggregation of logistic regressions based on α-cuts combines the uncertainty of the response itself and the ambiguity of the target within a single possibility measure; (ii) an alternative approximates the response with a fuzzy analytical surface; and (iii) a convex delineation expresses the largest range of failure specific to a given management rule without probabilistic assumptions. To illustrate the proposed approaches, we use the flood-prone reservoir system of the Upper Saint-François River Basin in Canada as a case study. This study shows that ambiguity can be effectively be considered when generating a response surface and suggests how further research could build a possibilistic framework for hydro-climatic uncertainty.


2020 ◽  
Vol 265 ◽  
pp. 121779 ◽  
Author(s):  
Luiz Maurício Furtado Maués ◽  
Brisa do Mar Oliveira do Nascimento ◽  
Weisheng Lu ◽  
Fan Xue

2020 ◽  
Vol 38 (4) ◽  
pp. 3971-3979
Author(s):  
Yana Yuan ◽  
Huaqi Chai

1990 ◽  
Vol 33 (1) ◽  
pp. 0306-0313 ◽  
Author(s):  
X. Q. Gui ◽  
C. E. Goering

Sign in / Sign up

Export Citation Format

Share Document