scholarly journals Possibilistic response surfaces combining fuzzy targets and hydro-climatic uncertainty in flood vulnerability assessment

2020 ◽  
Author(s):  
Thibaut Lachaut ◽  
Amaury Tilmant

Abstract. Several alternatives have been proposed to shift the paradigms of water management under uncertainty from predictive to decision-centric. An often mentioned tool is the stress-test response surface; mapping system performance to a large sample of future hydro-climatic conditions. Dividing this exposure space between success and failure requires clear performance targets. In practice, however, stakeholders and decision-makers may be confronted with ambiguous objectives for which there are no clearly-defined (crisp) performance thresholds. Furthermore, response surfaces can be non-deterministic, as they do not fully capture all possible sources of hydro-climatic uncertainty. The challenge is thus to combine two different types of uncertainty: the irreducible uncertainty of the response itself relative to the variables that describe change, and the fuzziness of the performance target. We propose possibilistic surfaces to assess flood vulnerability with fuzzy performance thresholds. Three approaches are tested and compared on a un-gridded sample of the exposure space: (i) an aggregation of logistic regressions based on α-cuts combines the uncertainty of the response itself and the ambiguity of the target within a single possibility measure; (ii) an alternative approximates the response with a fuzzy analytical surface; and (iii) a convex delineation expresses the largest range of failure specific to a given management rule without probabilistic assumptions. To illustrate the proposed approaches, we use the flood-prone reservoir system of the Upper Saint-François River Basin in Canada as a case study. This study shows that ambiguity can be effectively be considered when generating a response surface and suggests how further research could build a possibilistic framework for hydro-climatic uncertainty.

2021 ◽  
Author(s):  
Thibaut Lachaut ◽  
Amaury Tilmant

Abstract. Several alternatives have been proposed to shift the paradigms of water management under uncertainty from predictive to decision-centric. An often-mentioned tool is the stress-test response surface, mapping system performance to a large sample of future hydro-climatic conditions. Dividing this exposure space between acceptable and unacceptable states requires a criterion of acceptable performance defined by a threshold. In practice, however, stakeholders and decision-makers may be confronted with ambiguous objectives for which the the acceptability threshold is not clearly defined (crisp). To accommodate such situations, this paper integrates fuzzy thresholds to the response surface tool. Such integration is not straightforward when response surfaces also have their own irreducible uncertainty, from the limited number of descriptors and the stochasticity of hydro-climatic conditions. Incorporating fuzzy thresholds therefore requires articulating uncertainties that are different in nature: the irreducible uncertainty of the response itself relative to the variables that describe change, and the ambiguity of the acceptability threshold. We thus propose possibilistic surfaces to assess flood vulnerability with fuzzy acceptability thresholds. An adaptation of the logistic regression for fuzzy set theory combines the probability of acceptable outcome and the ambiguity of the acceptability criterion within a single possibility measure. We use the flood-prone reservoir system of the Upper Saint-François River Basin in Canada as a case study to illustrate the proposed approach. Results show how a fuzzy threshold can be quantitatively integrated when generating a response surface, and how ignoring it might lead to different decisions. This study suggests that further theoretical development should link the decision-making under deep uncertainty framework with the existing experience of fuzzy set theory, notably for hydro-climatic vulnerability analysis.


2021 ◽  
Vol 25 (12) ◽  
pp. 6421-6435
Author(s):  
Thibaut Lachaut ◽  
Amaury Tilmant

Abstract. Several alternatives have been proposed to shift the paradigms of water management under uncertainty from predictive to decision-centric. An often-mentioned tool is the response surface mapping system performance with a large sample of future hydroclimatic conditions through a stress test. Dividing this exposure space between acceptable and unacceptable states requires a criterion of acceptable performance defined by a threshold. In practice, however, stakeholders and decision-makers may be confronted with ambiguous objectives for which the acceptability threshold is not clearly defined (crisp). To accommodate such situations, this paper integrates fuzzy thresholds to the response surface tool. Such integration is not straightforward when response surfaces also have their own irreducible uncertainty from the limited number of descriptors and the stochasticity of hydroclimatic conditions. Incorporating fuzzy thresholds, therefore, requires articulating categories of imperfect knowledge that are different in nature, i.e., the irreducible uncertainty of the response itself relative to the variables that describe change and the ambiguity of the acceptability threshold. We, thus, propose possibilistic surfaces to assess flood vulnerability with fuzzy acceptability thresholds. An adaptation of the logistic regression for fuzzy set theory combines the probability of an acceptable outcome and the ambiguity of the acceptability criterion within a single possibility measure. We use the flood-prone reservoir system of the Upper Saint François River basin in Canada as a case study to illustrate the proposed approach. Results show how a fuzzy threshold can be quantitatively integrated when generating a response surface and how ignoring it might lead to different decisions. This study suggests that further conceptual developments could link the reliance on acceptability thresholds in bottom-up assessment frameworks with the current uses of fuzzy set theory.


1988 ◽  
Vol 7 (7) ◽  
pp. 1013-1030 ◽  
Author(s):  
C. Gennings ◽  
R. A. Carchman ◽  
W. H. Carter ◽  
E. D. Campbell ◽  
R. M. Boyle ◽  
...  

The therapeutic efficacy of atropine sulfate/pralidoxime chloride (ATR/2-PAM) treatment therapy and physostigmine (PHY) pretreatment therapy was evaluated in soman-challenged guinea pigs. Response surface analysis (RSM) of treatment efficacy indicated that the optimal ATR/2-PAM dose combination varied as a function of both the soman (GD) challenge level and the PHY pretreatment dose. Efficacy was, therefore, evaluated for varying PHY pretreatment doses in combination with the appropriate optimal ATR/2-PAM treatment (as determined by RSM for each soman challenge dose and PHY dose evaluated). The response surfaces depicting the effects (i.e., probability of survival) of ATR/2-PAM combinations at fixed levels of PHY and GD are presented, and confidence regions and point estimates for optimal ATR/2-PAM treatment combination are included. It was estimated that with optimal therapy a protective ratio (PR) of 6 can be observed. Comparisons were made between the use of PHY/ATR/2-PAM as presented here and the use of PYR/ATR/2-PAM, as discussed by Jones et al.(1) Both studies showed a strong positive (r ≥ 0.98) relationship between dose and the PR. However, the estimated slope parameter for PHY was significantly larger ( P < 0.001) than the slope parameter for pyridostigmine (PYR). This difference in slopes may indicate different mechanisms of action for PYR and PHY.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Amir Moslemi ◽  
Mahmood Shafiee

PurposeIn a multistage process, the final quality in the last stage not only depends on the quality of the task performed in that stage but is also dependent on the quality of the products and services in intermediate stages as well as the design parameters in each stage. One of the most efficient statistical approaches used to model the multistage problems is the response surface method (RSM). However, it is necessary to optimize each response in all stages so to achieve the best solution for the whole problem. Robust optimization can produce very accurate solutions in this case.Design/methodology/approachIn order to model a multistage problem, the RSM is often used by the researchers. A classical approach to estimate response surfaces is the ordinary least squares (OLS) method. However, this method is very sensitive to outliers. To overcome this drawback, some robust estimation methods have been presented in the literature. In optimization phase, the global criterion (GC) method is used to optimize the response surfaces estimated by the robust approach in a multistage problem.FindingsThe results of a numerical study show that our proposed robust optimization approach, considering both the sum of square error (SSE) index in model estimation and also GC index in optimization phase, will perform better than the classical full information maximum likelihood (FIML) estimation method.Originality/valueTo the best of the authors’ knowledge, there are few papers focusing on quality-oriented designs in the multistage problem by means of RSM. Development of robust approaches for the response surface estimation and also optimization of the estimated response surfaces are the main novelties in this study. The proposed approach will produce more robust and accurate solutions for multistage problems rather than classical approaches.


1969 ◽  
Vol 9 (37) ◽  
pp. 121 ◽  
Author(s):  
JM Holder ◽  
BR Wilson ◽  
RJ Williams

Response surfaces were examined relating inputs of separated milk and wheat to liveweight gain, efficiency of feed conversion, and carcase composition of pigs growing to pork or bacon weights. Twenty-eight different dietary treatments were examined in eight separate experiments. Diets ranged from all separated milk to all wheat, and in each experiment levels of feeding ranged from two to five per cent of body weight. A total of 128 individually fed pigs were used. As levels of feeding increased, daily gains increased, dissectible lean decreased, but there was no consistent effect on efficiency of feed conversion. The exception was where the quality and quantity of protein ingested limited growth rate, and under these circumstances feed efficiency tended to worsen. Desirable production factors were not necessarily associated with any one treatment. Although high daily gains meant that pigs were marketed earlier, carcases produced in this way were fat and not as valuable as those pigs grown more slowly. It was concluded that the response surface approach offers a method of examining a wide range of inputoutput relationships with a minimum expenditure of research facilities.


EP Europace ◽  
2017 ◽  
Vol 19 (suppl_3) ◽  
pp. iii43-iii43
Author(s):  
C. Lemes ◽  
C. Sohns ◽  
T. Maurer ◽  
M. Chmelevsky ◽  
M. Budanova ◽  
...  

2014 ◽  
Vol 660 ◽  
pp. 140-144
Author(s):  
A. Mataram ◽  
Ahmad Fauzi Ismail ◽  
A.S. Mohruni ◽  
T. Matsura

Effects of material and process parameters on the electrospun polyacrylonitrile fibers were experimentally investigated. Response surface methodology (RSM) was utilized to design the experiments at the setting of solution concentration, voltage and the collector distance. It also imparted the evaluation of the significance of each parameter on pore size, contact angle, modulus young and clean water permeability. Effect of applied voltage in micron-scale fiber diameter was observed to be almost negligible when solution concentration and collector distance were high. However, all three factors were found statistically significant in the production of nano-scale fibers. The response surface predictions revealed the parameter interactions for the resultant fiber diameter, and showed that there is negative correlation between the mean diameter and coefficient of variation for the fiber diameters were in agreement with the experimental results. Response surfaces were constructed to identify the processing window suitable for producing nanoscale fibers. A sub-domain of the parameter space consisting of the solution concentration, applied voltage and collector distance, was suggested for the potential nano scale fiber production.


2014 ◽  
Vol 955-959 ◽  
pp. 848-854
Author(s):  
Yin Xiang Gao ◽  
Lei Yang ◽  
Yuan Gang Zu ◽  
Li Ping Yao

An ultrasound-assisted procedure for the extraction of pectin from heads ofHelianthus annuusL. (sunflower) was established. A Box–Behnken design (BBD) was employed to optimize the extraction temperature (X1: 30–50°C), extraction time (X2: 20–40 min) and pH (X3: 2.5–3.5) to obtain a high yield of pectin with high degree of esterification (DE) from sunflower heads. Analysis of variance showed that the contribution of a quadratic model was significant for the pectin extraction yield and DE. An optimization study using response surface methodology was performed and 3D response surfaces were plotted from the mathematical model. According to the RSM model, the highest pectin yield (23.11 ± 0.08%) and DE (39.85 ± 0.14%) can be achieved when the UAE process is carried out at 50°C for 40min using a hydrochloric acid solution of pH 3.0. These results suggest that ultrasound-assisted extraction could be a good option for the extraction of functional pectin from sunflower heads at industrial level.


Author(s):  
Sid-Ahmed Rezzoug ◽  
Zoulikha Maache-Rezzoug ◽  
Frédéric Sannier ◽  
Karim Allaf

The instantaneous controlled pressure drop process (or D.I.C process: ``Détente Instantanée Contrôlée") was used as a pre-treatment prior to pectin acid extraction from orange peel. This process involves subjecting the orange peel for a short time to steam pressure varying from 100 to 700 kPa, followed by an instantaneous decompression to vacuum at 5 kPa. Effects of processing pressure, moisture content of peels before the thermomechanical treatment and processing time were examined with response surface methodology. The optimal conditions were determined and the response surfaces were plotted from the mathematical models. The Fisher test and p-value indicated that both processing pressure and moisture content of peels before the pre-treatment had a highly significant effect on the pectin yield. The quadratic effect of processing pressure as well as the interaction effects of the initial moisture content and processing time also had a significant effect on the response. Moreover, the kinetics of pectin extraction showed that after few minutes of hydrolysis, the yields of pectin were systematically higher than that of the control sample and this is important from industrial point of view because the hydrolysis of pectin is generally performed in 10-15 minutes.


2006 ◽  
Vol 22 (2) ◽  
pp. 120-130 ◽  
Author(s):  
Yi-Chung Lin ◽  
Jack Farr ◽  
Kevin Carter ◽  
Benjamin J. Fregly

When optimization is used to evaluate a joint contact model's ability to reproduce experimental measurements, the high computational cost of repeated contact analysis can be a limiting factor. This paper presents a computationally-efficient response surface optimization methodology to address this limitation. Quadratic response surfaces were fit to contact quantities (contact force, maximum pressure, average pressure, and contact area) predicted by a discrete element contact model of the tibiofemoral joint for various combinations of material modulus and relative bone pose (i.e., position and orientation). The response surfaces were then used as surrogates for costly contact analyses in optimizations that minimized differences between measured and predicted contact quantities. The methodology was evaluated theoretically using six sets of synthetic (i.e., computer-generated) contact data, and practically using one set of experimental contact data. For the synthetic cases, the response surface optimizations recovered all contact quantities to within 3.4% error. For the experimental case, they matched all contact quantities to within 6.3% error except for maximum contact pressure, which was in error by up to 50%. Response surface optimization provides rapid evaluation of joint contact models within a limited range of relative bone poses and can help identify potential weaknesses in contact model formulation and/or experimental data quality.


Sign in / Sign up

Export Citation Format

Share Document