scholarly journals A quasi three dimensional model of water flow in the subsurface of Milano (Italy): the stationary flow

2000 ◽  
Vol 4 (1) ◽  
pp. 113-124 ◽  
Author(s):  
M. Giudici ◽  
L. Foglia ◽  
G. Parravicini ◽  
G. Ponzini ◽  
B. Sincich

Abstract. A quasi three-dimensional model is developed to simulate the behaviour of the aquifer system which is the resource of drinkable water for the town of Milano (Italy). Non continuous semipermeable layers locally separate permeable levels in a multilayered system, consisting of a phreatic and three confined aquifers. The numerical model is a conservative finite difference scheme based on the discretisation of the water balance equation for stationary flow. The grid spacing is 500 m and has been chosen, taking into account the distribution of the data in an area of about 400 km2. The model has been calibrated with a "trial and error" procedure, by comparison of the results of the model with the observations for three years (1950, 1974 and 1982) which correspond to different flow situations. Once calibrated, the model has been used as a predictive tool, to forecast the behaviour of the aquifer system for other years of the 20th century; the comparison between the model forecasts and observations is good. The model is capable of describing both the strong drawdown of the water table in the 1970s, when the water demand for domestic and industrial needs was very high, and the rise of the water table in the 1990s, when water extraction decreased. The results of the model confirm that the phreatic level is controlled largely by the local extraction of water; moreover, the aquifer system reacts to an increasing water demand with a small increase of the inflow and with a strong decrease of the outflow from its boundaries.

Water ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1714 ◽  
Author(s):  
Haibo Jiang ◽  
Chunguang He ◽  
Wenbo Luo ◽  
Haijun Yang ◽  
Lianxi Sheng ◽  
...  

Habitat loss is a key factor affecting Siberian crane stopovers. The accurate calculation of water supply and effective water resource management schemes plays an important role in stopover habitat restoration for the Siberian crane. In this paper, the ecological water demand was calculated and corrected by developing a three-dimensional model. The results indicated that the calculated minimum and optimum ecological water demand values for the Siberian crane were 2.47 × 108 m3~3.66 × 108 m3 and 4.96 × 108 m3~10.36 × 108 m3, respectively, in the study area. After correction with the three-dimensional model, the minimum and optimum ecological water demand values were 3.75 × 108 m3 and 5.21 × 108 m3, respectively. A water resource management scheme was established to restore Siberian crane habitat. Continuous, area-specific and simulated flood water supply options based on water diversions were used to supply water. The autumn is the best season for area-specific and simulating flood water supply. These results can serve as a reference for protecting other waterbirds and restoring wetlands in semi-arid areas.


Skull Base ◽  
2008 ◽  
Vol 18 (S 01) ◽  
Author(s):  
Akio Morita ◽  
Toshikazu Kimura ◽  
Shigeo Sora ◽  
Kengo Nishimura ◽  
Hisayuki Sugiyama ◽  
...  

2019 ◽  
Vol 10 (6) ◽  
pp. 1382-1394
Author(s):  
R. Vijayalakshmi ◽  
V. K. Soma Sekhar Srinivas ◽  
E. Manjoolatha ◽  
G. Rajeswari ◽  
M. Sundaramurthy

Sign in / Sign up

Export Citation Format

Share Document