scholarly journals Development of flood probability charts for urban drainage network in coastal areas through a simplified joint assessment approach

2011 ◽  
Vol 8 (2) ◽  
pp. 3793-3816 ◽  
Author(s):  
R. Archetti ◽  
A. Bolognesi ◽  
A. Casadio ◽  
M. Maglionico

Abstract. The operating conditions of urban drainage networks during storm events certainly depend on the hydraulic conveying capacity of conduits but also on downstream boundary conditions. This is particularly true in costal areas where the level of the receiving water body is directly or indirectly affected by tidal or wave effects. In such cases, not just different rainfall conditions (varying intensity and duration), but also different sea-levels and their effects on the network operation should be considered. This paper aims to study the behaviour of a seaside town storm sewer network, estimating the threshold condition for flooding and proposing a simplified method to assess the urban flooding severity as a function of either climate variables. The case study is a portion of the drainage system of Rimini (Italy), implemented and numerically modelled by means of InfoWorks CS code. The hydraulic simulation of the sewerage system has therefore allowed to identify the percentage of nodes of the drainage system where flooding is expected to occur. Combining these percentages with both climate variables values has lead to the definition charts representing the combined degree of risk "sea-rainfall" for the drainage system under investigation. A final comparison between such charts and the results obtained from a one-year sea-rainfall time series has confirmed the reliability of the analysis.

2011 ◽  
Vol 15 (10) ◽  
pp. 3115-3122 ◽  
Author(s):  
R. Archetti ◽  
A. Bolognesi ◽  
A. Casadio ◽  
M. Maglionico

Abstract. The operating conditions of urban drainage networks during storm events depend on the hydraulic conveying capacity of conduits and also on downstream boundary conditions. This is particularly true in coastal areas where the level of the receiving water body is directly or indirectly affected by tidal or wave effects. In such cases, not just different rainfall conditions (varying intensity and duration), but also different sea-levels and their effects on the network operation should be considered. This paper aims to study the behaviour of a seaside town storm sewer network, estimating the threshold condition for flooding and proposing a simplified method to assess the urban flooding severity as a function of climate variables. The case study is a portion of the drainage system of Rimini (Italy), implemented and numerically modelled by means of InfoWorks CS code. The hydraulic simulation of the sewerage system identified the percentage of nodes of the drainage system where flooding is expected to occur. Combining these percentages with both climate variables' values has lead to the definition of charts representing the combined degree of risk "rainfall-sea level" for the drainage system under investigation. A final comparison between such charts and the results obtained from a one-year rainfall-sea level time series has demonstrated the reliability of the analysis.


2010 ◽  
Vol 62 (9) ◽  
pp. 2106-2114 ◽  
Author(s):  
J. P. Leitão ◽  
N. E. Simões ◽  
Č. Maksimović ◽  
F. Ferreira ◽  
D. Prodanović ◽  
...  

Lead time between rainfall prediction results and flood prediction results obtained by hydraulic simulations is one of the crucial factors in the implementation of real-time flood forecasting systems. Therefore, hydraulic simulation times must be as short as possible, with sufficient spatial and temporal flood distribution modelling accuracy. One of the ways to reduce the time required to run hydraulic model simulations is increasing computational speed by simplifying the model networks. This simplification can be conducted by removing and changing some secondary elements using network simplification techniques. The emphasis of this paper is to assess how the level of urban drainage network simplification influences the computational time and overall simulation results' accuracy. The models used in this paper comprise a sewer network and an overland flow drainage system in both 1D/1D and 1D/2D approaches. The 1D/1D model is used as the reference model to generate several models with different levels of simplifications. The results presented in this paper suggest that the 1D/2D models are not yet suitable to be used in real-time flood prediction applications due to long simulation time, while on the other hand, the simplified 1D/1D models show that considerable reductions in simulation time can be achieved without compromising simulation results (flow and water depth) accuracy.


1993 ◽  
Vol 27 (12) ◽  
pp. 205-208
Author(s):  
Dirk-Th Kollatsch

For upgrading the urban drainage system (UDS) the reduction of pollution impacts is the priority task concerning the environmental protection of the receiving waters. With simulation models the interactions between surface, sewer systems, overflow structures and treatment facilities within the UDS can be shown. Models to simulate the pollutant impacts, transport and the effects on the receiving waters are available. In a first step a pollutant transport model of sewer systems and a model to simulate the wastewater treatment processes are connected. With these models the efficiency of upgrading measures can be checked in all parts of urban drainage systems.


1997 ◽  
Vol 36 (8-9) ◽  
pp. 19-24 ◽  
Author(s):  
Richard Norreys ◽  
Ian Cluckie

Conventional UDS models are mechanistic which though appropriate for design purposes are less well suited to real-time control because they are slow running, difficult to calibrate, difficult to re-calibrate in real time and have trouble handling noisy data. At Salford University a novel hybrid of dynamic and empirical modelling has been developed, to combine the speed of the empirical model with the ability to simulate complex and non-linear systems of the mechanistic/dynamic models. This paper details the ‘knowledge acquisition module’ software and how it has been applied to construct a model of a large urban drainage system. The paper goes on to detail how the model has been linked with real-time radar data inputs from the MARS c-band radar.


2021 ◽  
Vol 13 (13) ◽  
pp. 7189
Author(s):  
Beniamino Russo ◽  
Manuel Gómez Valentín ◽  
Jackson Tellez-Álvarez

Urban drainage networks should be designed and operated preferably under open channel flow conditions without flux return, backwater, or overflows. In the case of extreme storm events, urban pluvial flooding is generated by the excess of surface runoff that could not be conveyed by pressurized sewer pipes, due to its limited capacity or, many times, due to the poor efficiency of surface drainage systems to collect uncontrolled overland flow. Generally, the hydraulic design of sewer systems is addressed more for underground networks, neglecting the surface drainage system, although inadequate inlet spacings and locations can cause dangerous flooding with relevant socio-economic impacts and the interruption of critical services and urban activities. Several experimental and numerical studies carried out at the Technical University of Catalonia (UPC) and other research institutions demonstrated that the hydraulic efficiency of inlets can be very low under critical conditions (e.g., high circulating overland flow on steep areas). In these cases, the hydraulic efficiency of conventional grated inlets and continuous transverse elements can be around 10–20%. Their hydraulic capacity, expressed in terms of discharge coefficients, shows the same criticism with values quite far from those that are usually used in several project practice phases. The grate clogging phenomenon and more intense storm events produced by climate change could further reduce the inlets’ performance. In this context, in order to improve the flood urban resilience of our cities, the relevance of the hydraulic behavior of surface drainage systems is clear.


1997 ◽  
Vol 36 (5) ◽  
pp. 373-380 ◽  
Author(s):  
C. Fronteau ◽  
W. Bauwens ◽  
P.A. Vanrolleghem

All the parts of an urban drainage system, i.e. the sewer system, the wastewater treatment plant (WWTP) and the river, should be integrated into one single model to assess the performance of the overall system and for the development of design and control strategies assisting in its sustainable and cost effective management. Existing models for the individual components of the system have to be merged in order to develop the integrated tool. One of the problems arising from this methodology is the incompatibility of state variables, processes and parameters used in the different modelling approaches. Optimisation of an urban drainage system, and of the wastewater treatment process in particular, requires a good knowledge of the wastewater composition. As important transformations take place between the emission from the household and the arrival at the treatment facility, sewer models should include these transformations in the sewer system. At present, however, research is still needed in order to increase our knowledge of these in-sewer processes. A comparison of the state variables, processes and parameters has been carried out in both sewer models (SMs) and activated sludge models (ASMs). An ASM approach is used for the description of reactions in sewer models. However, a difference is found in the expression for organic material (expressed in terms of BOD) and heterotrophic biomass is absent as a state variable, resulting in differences in processes and parameters. Reconciliation of both the models seems worthwhile and a preliminary solution is suggested in this paper.


Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2647
Author(s):  
Esteban Sañudo ◽  
Luis Cea ◽  
Jerónimo Puertas

Dual urban drainage models allow users to simulate pluvial urban flooding by analysing the interaction between the sewer network (minor drainage system) and the overland flow (major drainage system). This work presents a free distribution dual drainage model linking the models Iber and Storm Water Management Model (SWMM), which are a 2D overland flow model and a 1D sewer network model, respectively. The linking methodology consists in a step by step calling process from Iber to a Dynamic-link Library (DLL) that contains the functions in which the SWMM code is split. The work involves the validation of the model in a simplified urban street, in a full-scale urban drainage physical model and in a real urban settlement. The three study cases have been carefully chosen to show and validate the main capabilities of the model. Therefore, the model is developed as a tool that considers the main hydrological and hydraulic processes during a rainfall event in an urban basin, allowing the user to plan, evaluate and design new or existing urban drainage systems in a realistic way.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Marco Carbone ◽  
Michele Turco ◽  
Giuseppe Brunetti ◽  
Patrizia Piro

Design storms are very useful in many hydrological and hydraulic practices and are obtained from statistical analysis of precipitation records. However considering design storms, which are often quite unlike the natural rainstorms, may result in designing oversized or undersized drainage facilities. For these reasons, in this study, a two-parameter double exponential function is proposed to parameterize historical storm events. The proposed function has been assessed against the storms selected from 5-year rainfall time series with a 1-minute resolution, measured by three meteorological stations located in Calabria, Italy. In particular, a nonlinear least square optimization has been used to identify parameters. In previous studies, several evaluation methods to measure the goodness of fit have been used with excellent performances. One parameter is related to the centroid of the rain distribution; the second one is related to high values of the standard deviation of the kurtosis for the selected events. Finally, considering the similarity between the proposed function and the Gumbel function, the two parameters have been computed with the method of moments; in this case, the correlation values were lower than those computed with nonlinear least squares optimization but sufficiently accurate for designing purposes.


Sign in / Sign up

Export Citation Format

Share Document