scholarly journals Contrasting trends in hydrologic extremes for two sub-arctic catchments in northern Sweden − does glacier melt matter?

2012 ◽  
Vol 9 (1) ◽  
pp. 1041-1084 ◽  
Author(s):  
H. E. Dahlke ◽  
S. W. Lyon ◽  
J. R. Stedinger ◽  
G. Rosqvist ◽  
P. Jansson

Abstract. It is not clear how climatic change will influence glacial meltwater rates and terrestrial hydrology in the Sub-Arctic and Arctic. This uncertainty is particularly acute for hydrologic extremes (flood events) because understanding the frequency of such unusual events requires long records of observation not often available for the Arctic and Sub-Arctic. This study presents a statistical analysis of trends in the magnitude and timing of hydrologic extremes (flood events) and the mean summer discharge in two sub-arctic catchments, Tarfalajokk and Abiskojokk, in northern Sweden. The catchments have different glacier covers (30% and 1%, respectively). Statistically significant trends (at the 5% level) were identified for both catchments on an annual and on a seasonal scale (3-months averages) using the Mann-Kendall trend test. Stationarity of flood records was tested by analyzing trends in the flood quantiles, using generalized least squares regression. Hydrologic trends were related to observed changes in the precipitation and air temperature, and were correlated with 3-months averaged climate pattern indices (e.g. North Atlantic Oscillation). Both catchments showed a statistically significant increase in the annual mean air temperature over the comparison time period of 1985–2009 (Tarfalajokk and Abiskojokk p < 0.01), but lacked significant trends in the total precipitation (Tarfalajokk p = 0.91, Abiskojokk p = 0.44). Despite the similar climate evolution over the studied time period in the two catchments, data showed contrasting trends in the magnitude and timing of flood peaks and the mean summer discharge. Hydrologic trends indicated an amplification of the hydrologic response in the highly glaciated catchment and a dampening of the response in the nonglaciated catchment. The glaciated mountain catchment showed a statistically significant increasing trend in the flood magnitudes (p = 0.04) that is clearly correlated to the occurrence of extreme precipitation events. It also showed a significant increase in mean summer discharge (p = 0.0002), which is significantly correlated to the decrease in glacier mass balance and the increase in air temperature (p = 0.08). Conversely, the nonglaciated catchment showed a significant decrease in the mean summer discharge (p = 0.01), the flood magnitudes (p = 0.07) and an insignificant trend towards earlier flood occurrences (p = 0.53). These trends are explained by a reduction of the winter snow pack due to higher temperatures in the winter and spring and an increasing soil water storage capacity or catchment storage due to progressively thawing permafrost.

2012 ◽  
Vol 16 (7) ◽  
pp. 2123-2141 ◽  
Author(s):  
H. E. Dahlke ◽  
S. W. Lyon ◽  
J. R. Stedinger ◽  
G. Rosqvist ◽  
P. Jansson

Abstract. Our understanding is limited to how transient changes in glacier response to climate warming will influence the catchment hydrology in the Arctic and Sub-Arctic. This understanding is particularly incomplete for flooding extremes because understanding the frequency of such unusual events requires long records of observation not often available for the Arctic and Sub-Arctic. This study presents a statistical analysis of trends in the magnitude and timing of flood extremes and the mean summer discharge in two sub-arctic catchments, Tarfala and Abisko, in northern Sweden. The catchments have different glacier covers (30% and 1%, respectively). Statistically significant trends (at the 5% level) were identified for both catchments on an annual and on a seasonal scale (3-months averages) using the Mann-Kendall trend test. Stationarity of flood records was tested by analyzing trends in the flood quantiles, using generalized least squares regression. Hydrologic trends were related to observed changes in the precipitation and air temperature, and were correlated with 3-months averaged climate pattern indices (e.g. North Atlantic oscillation). Both catchments showed a statistically significant increase in the annual mean air temperature over the comparison time period of 1985–2009 (Tarfala and Abisko p<0.01), but did not show significant trends in the total precipitation (Tarfala p = 0.91, Abisko p = 0.44). Despite the similar climate evolution over the studied period in the two catchments, data showed contrasting trends in the magnitude and timing of flood peaks and the mean summer discharge. Hydrologic trends indicated an amplification of the streamflow and flood response in the highly glacierized catchment and a dampening of the response in the non-glacierized catchment. The glacierized mountain catchment showed a statistically significant increasing trend in the flood magnitudes (p = 0.04) that is clearly correlated to the occurrence of extreme precipitation events. It also showed a significant increase in mean summer discharge (p = 0.0002), which is significantly correlated to the decrease in glacier mass balance and the increase in air temperature (p = 0.08). Conversely, the non-glacierized catchment showed a significant decrease in the mean summer discharge (p = 0.01), the flood magnitudes (p = 0.07) and an insignificant trend towards earlier flood occurrences (p = 0.53). These trends are explained by a reduction of the winter snow pack due to higher temperatures in the winter and spring and an increasing soil water storage capacity or catchment storage due to progressively thawing permafrost.


1984 ◽  
Vol 62 (5) ◽  
pp. 893-898 ◽  
Author(s):  
Ola Engelmark

The occurrence of forest fires in the Muddus National Park (area, 50 000 ha), just north of the Arctic Circle in northern Sweden, was investigated on 75 separate sample plots. Between 1413 and the present, evidence of 47 fire years was obtained by dating the fire scars on living Scots pines (Pinus sylvestris), the oldest of which had germinated in 1274. The fire traces found on the sample plots were fire scars on living or dead trees or charcoal fragments in the humus layer. Plots lacking all traces of former forest fires were mainly those situated on sites surrounded by extensive mires. Forest fires were shown to have occurred in the five different types of forest investigated. The commonest frequencies of fires in the pine forests occurred with the interval 81–90 years, while the mean frequency was 110 years. The mean interval of time elapsed since the last forest fire occurred in the pine forests was 144 years. Some of the major fire years in the Muddus area coincide with forest fires in other parts of northern Sweden, in the taiga of western Russia, and in central Siberia.


1995 ◽  
Vol 21 ◽  
pp. 399-405 ◽  
Author(s):  
Martin Hoelzle ◽  
Wilfried Haeberli

Models are developed to simulate changes in permafrost distribution and glacier size in mountain areas. The models exclusively consider equilibrium conditions. As a first application, the simplified assumption is used that one single parameter (mean annual air temperature) is changing. Permafrost distribution patterns are estimated for a test area (Corvatsch-Furtschellas) and for the whole Upper Engadin region (eastern Swiss Alps) using a relation between permafrost occurrence as indicated by BTS (bottom temperature of the winter snow cover) measurements, potential direct solar radiation and mean annual air temperature. Glacier sizes were assessed in the same region with data from the World Glacier Inventory database. The simulations for the glaciers are based on the assumption that an increase or decrease in equilibrium-line altitude (ELA) would lead to a mass-balance change. Model calculations for potential future changes in ELA and mass balance include estimated developments of area, length and volume. Mass changes were also calculated for the time period 1850–1973 on the basis of measured cumulative length change, glacier length and estimated ablation at the glacier terminus. For the time period since 1850, permafrost became inactive or disappeared in about 15% of the area originally underlain by permafrost in the whole Upper Engadin region, and mean annual glacier mass balance was calculated as −0.26 to −0.46 m w.e.a−1 for the larger glaciers in the same area. The estimated loss in glacier volume since 1850 lies between 55% and 66% of the original value. With an assumed increase in mean annual air temperature of +3°C, the area of supposed permafrost occurrence would possibly be reduced by about 65% with respect to present-day conditions and only three glaciers would continue to partially exist.


2021 ◽  
Author(s):  
Jouni Räisänen

AbstractThe effect of atmospheric circulation on monthly, seasonal and annual mean surface air temperature trends in the years 1979–2018 is studied by applying a trajectory-based method on the European Centre for Medium-Range Weather Forecasts ERA5 reanalysis data. To the extent that the method captures the effects of atmospheric circulation, the results suggest that circulation trends only had a minor impact on observed annual mean temperature trends in most areas. Exceptions include, for example, a decrease in annual mean warming by about 1 °C in western Siberia, and increased warming in central Europe and the Arctic Ocean. However, the effect of circulation trends on seasonal and particularly monthly temperature trends is more substantial. Subtracting the effect of circulation changes from the ERA5 temperature trends leaves residual trends with a smoother annual cycle than the original trends. The residual monthly mean temperature trends also tend to agree better with the multi-model mean temperature trends from models in the 5th Coupled Model Intercomparison Project (CMIP5) than the original ERA5 trends do, with a 42% decrease in the mean square difference over the global land area. However, the corresponding decrease in the mean square difference of the annual mean temperature trends is only 6%.


1995 ◽  
Vol 21 ◽  
pp. 399-405 ◽  
Author(s):  
Martin Hoelzle ◽  
Wilfried Haeberli

Models are developed to simulate changes in permafrost distribution and glacier size in mountain areas. The models exclusively consider equilibrium conditions. As a first application, the simplified assumption is used that one single parameter (mean annual air temperature) is changing.Permafrost distribution patterns are estimated for a test area (Corvatsch-Furtschellas) and for the whole Upper Engadin region (eastern Swiss Alps) using a relation between permafrost occurrence as indicated by BTS (bottom temperature of the winter snow cover) measurements, potential direct solar radiation and mean annual air temperature. Glacier sizes were assessed in the same region with data from the World Glacier Inventory database. The simulations for the glaciers are based on the assumption that an increase or decrease in equilibrium-line altitude (ELA) would lead to a mass-balance change. Model calculations for potential future changes in ELA and mass balance include estimated developments of area, length and volume. Mass changes were also calculated for the time period 1850–1973 on the basis of measured cumulative length change, glacier length and estimated ablation at the glacier terminus.For the time period since 1850, permafrost became inactive or disappeared in about 15% of the area originally underlain by permafrost in the whole Upper Engadin region, and mean annual glacier mass balance was calculated as −0.26 to −0.46 m w.e.a−1 for the larger glaciers in the same area. The estimated loss in glacier volume since 1850 lies between 55% and 66% of the original value. With an assumed increase in mean annual air temperature of +3°C, the area of supposed permafrost occurrence would possibly be reduced by about 65% with respect to present-day conditions and only three glaciers would continue to partially exist.


2017 ◽  
Vol 14 (18) ◽  
pp. 4071-4083 ◽  
Author(s):  
Keith F. Lewin ◽  
Andrew M. McMahon ◽  
Kim S. Ely ◽  
Shawn P. Serbin ◽  
Alistair Rogers

Abstract. Advances in understanding and model representation of plant and ecosystem responses to rising temperature have typically required temperature manipulation of research plots, particularly when considering warming scenarios that exceed current climate envelopes. In remote or logistically challenging locations, passive warming using solar radiation is often the only viable approach for temperature manipulation. However, current passive warming approaches are only able to elevate the mean daily air temperature by  ∼  1.5 °C. Motivated by our need to understand temperature acclimation in the Arctic, where warming has been markedly greater than the global average and where future warming is projected to be  ∼  2–3 °C by the middle of the century; we have developed an alternative approach to passive warming. Our zero-power warming (ZPW) chamber requires no electrical power for fully autonomous operation. It uses a novel system of internal and external heat exchangers that allow differential actuation of pistons in coupled cylinders to control chamber venting. This enables the ZPW chamber venting to respond to the difference between the external and internal air temperatures, thereby increasing the potential for warming and eliminating the risk of overheating. During the thaw season on the coastal tundra of northern Alaska our ZPW chamber was able to elevate the mean daily air temperature 2.6 °C above ambient, double the warming achieved by an adjacent passively warmed control chamber that lacked our hydraulic system. We describe the construction, evaluation and performance of our ZPW chamber and discuss the impact of potential artefacts associated with the design and its operation on the Arctic tundra. The approach we describe is highly flexible and tunable, enabling customization for use in many different environments where significantly greater temperature manipulation than that possible with existing passive warming approaches is desired.


2006 ◽  
Vol 19 (20) ◽  
pp. 5422-5438 ◽  
Author(s):  
R. G. Graversen

Abstract The warming of the near-surface air in the Arctic region has been larger than the global mean surface warming. There is general agreement that the Arctic amplification of the surface air temperature (SAT) trend to a considerable extent is due to local effects such as the retreat of sea ice, especially during the summer months, and earlier melting of snow in the spring season. There is no doubt that these processes are important causes of the Arctic SAT trend. It is less clear, however, whether the trend may also be related to recent changes in the atmospheric midlatitude circulation. This question is the focus of the present paper. Model experiments have shown that in a warmer climate responding to, for example, a doubling of CO2, the atmospheric northward energy transport (ANET) will increase and cause polar SAT amplification. In the present study, the development of the ANET across 60°N and its linkage to the Arctic SAT have been explored using the ERA-40 reanalysis data from the European Centre for Medium-Range Weather Forecasts (ECMWF). It is found that during 1979–2001, the ANET has experienced an overall positive but weak trend, which was largest during the period from the mid-1980s to the mid-1990s. In addition, it is found that the Arctic SAT is sensitive to variability of the ANET across 60°N and hence to variability of the midlatitude circulation: A large ANET is followed by warming of the Arctic where ANET leads by about 5 days. The warming is located primarily north of the Atlantic and Pacific sectors, indicating that baroclinic weather systems developing around the Icelandic and Aleutian lows are important for the energy transport. Furthermore, it is suggested here that a small, but statistically significant, part of the mean Arctic SAT trend is linked to the trend in the ANET. Another important indicator of the midlatitude circulation is the Arctic Oscillation (AO). Through the 1980s and early 1990s the AO index has shown a positive trend. However, even though a part of the SAT trend can be related to the AO in localized parts of the Arctic area, the mean Arctic SAT trend shows no significant linkage to the AO.


2007 ◽  
Vol 7 (2) ◽  
pp. 3333-3395 ◽  
Author(s):  
G. Wetzel ◽  
A. Bracher ◽  
B. Funke ◽  
F. Goutail ◽  
F. Hendrick ◽  
...  

Abstract. The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) instrument was launched aboard the environmental satellite ENVISAT into its sun-synchronous orbit on 1 March 2002. The short-lived species NO2 is one of the key target products of MIPAS that are operationally retrieved from limb emission spectra measured in the stratosphere and mesosphere. Within the MIPAS validation activities, a large number of independent observations from balloons, satellites and ground-based stations have been compared to European Space Agency (ESA) version 4.61 operational NO2 data comprising the time period from July 2002 until March 2004 where MIPAS measured with full spectral resolution. Comparisons between MIPAS and balloon-borne observations carried out in 2002 and 2003 in the Arctic, at mid-latitudes, and in the tropics show a very good agreement below 40 km altitude with a mean deviation of roughly 3%, virtually without any significant bias. The comparison to ACE satellite observations exhibits only a small negative bias of MIPAS which appears not to be significant. The independent satellite instruments HALOE, SAGE II, and POAM III confirm in common for the spring-summer time period a negative bias of MIPAS in the Arctic and a positive bias in the Antarctic middle and upper stratosphere exceeding frequently the combined systematic error limits. In contrast to the ESA operational processor, the IMK/IAA retrieval code allows accurate inference of NO2 volume mixing ratios under consideration of all important non-LTE processes. Large differences between both retrieval results appear especially at higher altitudes, above about 50 to 55 km. These differences might be explained at least partly by non-LTE under polar winter conditions but not at mid-latitudes. Below this altitude region mean differences between both processors remain within 5% (during night) and up to 10% (during day) under undisturbed (September 2002) conditions and up to 40% under perturbed polar night conditions (February and March 2004). The intercomparison of ground-based NDACC observations shows no significant bias between the FTIR measurements in Kiruna (68° N) and MIPAS in summer 2003 but larger deviations in autumn and winter. The mean deviation over the whole comparison period remains within 10%. A mean negative bias of 15% for MIPAS daytime and 8% for nighttime observations has been determined for UV-vis comparisons over Harestua (60° N). Results of a pole-to-pole comparison of ground-based DOAS/UV-visible sunrise and MIPAS mid-morning column data has shown that the mean agreement in 2003 falls within the accuracy limit of the comparison method. Altogether, it can be indicated that MIPAS NO2 profiles yield valuable information on the vertical distribution of NO2 in the lower and middle stratosphere (below about 45 km) during day and night with an overall accuracy of about 10–20% and a precision of typically 5–15% such that the data are useful for scientific studies. In cases where extremely high NO2 occurs in the mesosphere (polar winter) retrieval results in the lower and middle stratosphere are less accurate than under undisturbed atmospheric conditions.


2007 ◽  
Vol 7 (12) ◽  
pp. 3261-3284 ◽  
Author(s):  
G. Wetzel ◽  
A. Bracher ◽  
B. Funke ◽  
F. Goutail ◽  
F. Hendrick ◽  
...  

Abstract. The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) instrument was launched aboard the environmental satellite ENVISAT into its sun-synchronous orbit on 1 March 2002. The short-lived species NO2 is one of the key target products of MIPAS that are operationally retrieved from limb emission spectra measured in the stratosphere and mesosphere. Within the MIPAS validation activities, a large number of independent observations from balloons, satellites and ground-based stations have been compared to European Space Agency (ESA) version 4.61 operational NO2 data comprising the time period from July 2002 until March 2004 where MIPAS measured with full spectral resolution. Comparisons between MIPAS and balloon-borne observations carried out in 2002 and 2003 in the Arctic, at mid-latitudes, and in the tropics show a very good agreement below 40 km altitude with a mean deviation of roughly 3%, virtually without any significant bias. The comparison to ACE satellite observations exhibits only a small negative bias of MIPAS which appears not to be significant. The independent satellite instruments HALOE, SAGE II, and POAM III confirm in common for the spring-summer time period a negative bias of MIPAS in the Arctic and a positive bias in the Antarctic middle and upper stratosphere exceeding frequently the combined systematic error limits. In contrast to the ESA operational processor, the IMK/IAA retrieval code allows accurate inference of NO2 volume mixing ratios under consideration of all important non-LTE processes. Large differences between both retrieval results appear especially at higher altitudes, above about 50 to 55 km. These differences might be explained at least partly by non-LTE under polar winter conditions but not at mid-latitudes. Below this altitude region mean differences between both processors remain within 5% (during night) and up to 10% (during day) under undisturbed (September 2002) conditions and up to 40% under perturbed polar night conditions (February and March 2004). The intercomparison of ground-based NDACC observations shows no significant bias between the FTIR measurements in Kiruna (68° N) and MIPAS in summer 2003 but larger deviations in autumn and winter. The mean deviation over the whole comparison period remains within 10%. A mean negative bias of 15% for MIPAS daytime and 8% for nighttime observations has been determined for UV-vis comparisons over Harestua (60° N). Results of a pole-to-pole comparison of ground-based DOAS/UV-visible sunrise and MIPAS mid-morning column data has shown that the mean agreement in 2003 falls within the accuracy limit of the comparison method. Altogether, it can be indicated that MIPAS NO2 profiles yield valuable information on the vertical distribution of NO2 in the lower and middle stratosphere (below about 45 km) during day and night with an overall accuracy of about 10–20% and a precision of typically 5–15% such that the data are useful for scientific studies. In cases where extremely high NO2 occurs in the mesosphere (polar winter) retrieval results in the lower and middle stratosphere are less accurate than under undisturbed atmospheric conditions.


2017 ◽  
Author(s):  
Keith F. Lewin ◽  
Andrew McMahon ◽  
Kim S. Ely ◽  
Shawn P. Serbin ◽  
Alistair Rogers

Abstract. Advances in understanding and model representation of plant and ecosystem responses to rising temperature have typically required temperature manipulation of research plots, particularly when considering warming scenarios that exceed current climate envelopes. In remote or logistically challenging locations, passive warming using solar radiation is often the only viable approach for temperature manipulation. However, current passive warming approaches are only able to elevate the mean daily air temperature by ~ 1.5 °C. Motivated by our need to understand temperature acclimation in the Arctic, where warming has been markedly greater than the global average and where future warming is projected to be ~ 2–3 °C by the middle of the century; we have developed an alternative approach to passive warming. Our Zero Power Warming (ZPW) chamber requires no electrical power for fully autonomous operation. It uses a novel system of internal and external heat exchangers that allow differential actuation of pistons in coupled cylinders to control chamber venting. This enables the ZPW chamber venting to respond to the difference between the external and internal air temperatures, thereby increasing the potential for warming and eliminating the risk of overheating. On the coastal tundra of northern Alaska our ZPW chamber was able to elevate the mean daily air temperature 2.6 °C above ambient, double the warming achieved by an adjacent passively warmed control chamber that lacked our hydraulic system. We describe the construction, evaluation and performance of our ZPW chamber and discuss the impact of potential artefacts associated with the design and its operation on the Arctic tundra. The approach we describe is highly flexible and tuneable enabling customization for use in many different environments where significantly greater temperature manipulation than that possible with existing passive warming approaches is desired.


Sign in / Sign up

Export Citation Format

Share Document