scholarly journals VOXEL-BASED EXTRACTION OF INDIVIDUAL PYLONS AND WIRES FROM LIDAR POINT CLOUD DATA

Author(s):  
N. Munir ◽  
M. Awrangjeb ◽  
B. Stantic ◽  
G. Lu ◽  
S. Islam

<p><strong>Abstract.</strong> Extraction of individual pylons and wires is important for modelling of 3D objects in a power line corridor (PLC) map. However, the existing methods mostly classify points into distinct classes like pylons and wires, but hardly into individual pylons or wires. The proposed method extracts standalone pylons, vegetation and wires from LiDAR data. The extraction of individual objects is needed for a detailed PLC mapping. The proposed approach starts off with the separation of ground and non ground points. The non-ground points are then classified into vertical (e.g., pylons and vegetation) and non-vertical (e.g., wires) object points using the vertical profile feature (VPF) through the binary support vector machine (SVM) classifier. Individual pylons and vegetation are then separated using their shape and area properties. The locations of pylons are further used to extract the span points between two successive pylons. Finally, span points are voxelised and alignment properties of wires in the voxel grid is used to extract individual wires points. The results are evaluated on dataset which has multiple spans with bundled wires in each span. The evaluation results show that the proposed method and features are very effective for extraction of individual wires, pylons and vegetation with 99% correctness and 98% completeness.</p>

2021 ◽  
Author(s):  
Lujing Qian ◽  
Yubang Yang ◽  
Shuyu Sun ◽  
Tengchao Huang

2019 ◽  
Vol 11 (23) ◽  
pp. 2737 ◽  
Author(s):  
Minsu Kim ◽  
Seonkyung Park ◽  
Jeffrey Danielson ◽  
Jeffrey Irwin ◽  
Gregory Stensaas ◽  
...  

The traditional practice to assess accuracy in lidar data involves calculating RMSEz (root mean square error of the vertical component). Accuracy assessment of lidar point clouds in full 3D (three dimension) is not routinely performed. The main challenge in assessing accuracy in full 3D is how to identify a conjugate point of a ground-surveyed checkpoint in the lidar point cloud with the smallest possible uncertainty value. Relatively coarse point-spacing in airborne lidar data makes it challenging to determine a conjugate point accurately. As a result, a substantial unwanted error is added to the inherent positional uncertainty of the lidar data. Unless we keep this additional error small enough, the 3D accuracy assessment result will not properly represent the inherent uncertainty. We call this added error “external uncertainty,” which is associated with conjugate point identification. This research developed a general external uncertainty model using three-plane intersections and accounts for several factors (sensor precision, feature dimension, and point density). This method can be used for lidar point cloud data from a wide range of sensor qualities, point densities, and sizes of the features of interest. The external uncertainty model was derived as a semi-analytical function that takes the number of points on a plane as an input. It is a normalized general function that can be scaled by smooth surface precision (SSP) of a lidar system. This general uncertainty model provides a quantitative guideline on the required conditions for the conjugate point based on the geometric features. Applications of the external uncertainty model were demonstrated using various lidar point cloud data from the U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) library to determine the valid conditions for a conjugate point from three-plane modeling.


Author(s):  
J. Jeong ◽  
I. Lee

Generating of a highly precise map grows up with development of autonomous driving vehicles. The highly precise map includes a precision of centimetres level unlike an existing commercial map with the precision of meters level. It is important to understand road environments and make a decision for autonomous driving since a robust localization is one of the critical challenges for the autonomous driving car. The one of source data is from a Lidar because it provides highly dense point cloud data with three dimensional position, intensities and ranges from the sensor to target. In this paper, we focus on how to segment point cloud data from a Lidar on a vehicle and classify objects on the road for the highly precise map. In particular, we propose the combination with a feature descriptor and a classification algorithm in machine learning. Objects can be distinguish by geometrical features based on a surface normal of each point. To achieve correct classification using limited point cloud data sets, a Support Vector Machine algorithm in machine learning are used. Final step is to evaluate accuracies of obtained results by comparing them to reference data The results show sufficient accuracy and it will be utilized to generate a highly precise road map.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
MingFang Zhang ◽  
Rui Fu ◽  
YingShi Guo ◽  
Li Wang

Moving object classification is essential for autonomous vehicle to complete high-level tasks like scene understanding and motion planning. In this paper, we propose a novel approach for classifying moving objects into four classes of interest using 3D point cloud in urban traffic environment. Unlike most existing work on object recognition which involves dense point cloud, our approach combines extensive feature extraction with the multiframe classification optimization to solve the classification task when partial occlusion occurs. First, the point cloud of moving object is segmented by a data preprocessing procedure. Then, the efficient features are selected via Gini index criterion applied to the extended feature set. Next, Bayes Decision Theory (BDT) is employed to incorporate the preliminary results from posterior probability Support Vector Machine (SVM) classifier at consecutive frames. The point cloud data acquired from our own LIDAR as well as public KITTI dataset is used to validate the proposed moving object classification method in the experiments. The results show that the proposed SVM-BDT classifier based on 18 selected features can effectively recognize the moving objects.


2011 ◽  
Vol 403-408 ◽  
pp. 3267-3270
Author(s):  
Jin Guang Sun ◽  
Jun Tao Wang ◽  
Xin Nian Yang ◽  
Yang Li

This paper presents a point cloud reconstruction algorithm which based on SVR(support vector regression) . Firstly, the point cloud data pre-processing, filter out noise points. Then train the point by SVR , and we can get the function of surface expression. Finally, using the Marching Cube algorithm to visualize the implicit function. Experimental results show that the algorithm is more robust and more efficient.


2021 ◽  
Vol 13 (21) ◽  
pp. 4445
Author(s):  
Behrokh Nazeri ◽  
Melba Crawford

High-resolution point cloud data acquired with a laser scanner from any platform contain random noise and outliers. Therefore, outlier detection in LiDAR data is often necessary prior to analysis. Applications in agriculture are particularly challenging, as there is typically no prior knowledge of the statistical distribution of points, plant complexity, and local point densities, which are crop-dependent. The goals of this study were first to investigate approaches to minimize the impact of outliers on LiDAR acquired over agricultural row crops, and specifically for sorghum and maize breeding experiments, by an unmanned aerial vehicle (UAV) and a wheel-based ground platform; second, to evaluate the impact of existing outliers in the datasets on leaf area index (LAI) prediction using LiDAR data. Two methods were investigated to detect and remove the outliers from the plant datasets. The first was based on surface fitting to noisy point cloud data via normal and curvature estimation in a local neighborhood. The second utilized the PointCleanNet deep learning framework. Both methods were applied to individual plants and field-based datasets. To evaluate the method, an F-score was calculated for synthetic data in the controlled conditions, and LAI, the variable being predicted, was computed both before and after outlier removal for both scenarios. Results indicate that the deep learning method for outlier detection is more robust than the geometric approach to changes in point densities, level of noise, and shapes. The prediction of LAI was also improved for the wheel-based vehicle data based on the coefficient of determination (R2) and the root mean squared error (RMSE) of the residuals before and after the removal of outliers.


Author(s):  
M. Awrangjeb ◽  
M. K. Islam

High density airborne point cloud data has become an important means for modelling and maintenance of a power line corridor. Since, the amount of data in a dense point cloud is huge even in a small area, an automatic detection of pylons in the corridor can be a prerequisite for efficient and effective extraction of wires in a subsequent step. However, the existing solutions mostly overlook this important requirement by processing the whole data into one go, which nonetheless will hinder their applications to large areas. This paper presents a new pylon detection technique from point cloud data. First, the input point cloud is divided into ground and nonground points. The non-ground points within a specific low height region are used to generate a pylon mask, where pylons are found stand-alone, not connected with any wires. The candidate pylons are obtained using a connected component analysis in the mask, followed by a removal of trees by comparing area, shape and symmetry properties of trees and pylons. Finally, the parallelism property of wires with the line connecting pair of candidate pylons is exploited to remove trees that have the same area and shape properties as pylons. Experimental results show that the proposed technique provides a high pylon detection rate in terms of completeness (100&amp;thinsp;%) and correctness (100&amp;thinsp;%).


Author(s):  
Pankaj Kumar ◽  
Paul Lewis ◽  
Conor P. McElhinney

Laser scanning systems make use of Light Detection and Ranging (LiDAR) technology to acquire accurately georeferenced sets of dense 3D point cloud data. The information acquired using these systems produces better knowledge about the terrain objects which are inherently 3D in nature. The LiDAR data acquired from mobile, airborne or terrestrial platforms provides several benefit over conventional sources of data acquisition in terms of accuracy, resolution and attributes. However, the large volume and scale of LiDAR data have inhibited the development of automated feature extraction algorithms due to the extensive computational cost involved in it. Moreover, the heterogeneously distributed point cloud, which represents objects with varying size, point density, holes and complicated structures pose a great challenge for data processing. Currently, geospatial database systems do not provide a robust solution for efficient storage and accessibility of raw data in a way that data processing could be applied based on optimal spatial extent. In this paper, we present Global LiDAR and Imagery Mobile Processing Spatial Environment (GLIMPSE) system that provides a framework for storage, management and integration of 3D LiDAR data acquired from multiple platforms. The system facilitates an efficient accessibility to the raw dataset, which is hierarchically represented in a geographically meaningful way. We utilise the GLIMPSE system to automatically extract road median from Airborne Laser Scanning (ALS) point cloud. In the first part of this paper, we detail an approach to efficiently retrieve the point cloud data from the GLIMPSE system for a particular geographic area based on user requirements. In the second part, we present an algorithm to automatically extract road median from the retrieved LiDAR data. The developed road median extraction algorithm utilises the LiDAR elevation and intensity attributes to distinguish the median from the road surface. We successfully tested our algorithms on two road sections consisting of distinct road median types based on concrete and grass-hedge barriers. The use of GLIMPSE improved the efficiency of the road median extraction in terms of fast accessibility to ALS point cloud data for the required road sections. The developed system and its associated algorithms provide a comprehensive solution to the user's requirement for an efficient storage, integration, retrieval and processing of large volumes of LiDAR point cloud data. These findings and knowledge contribute to a more rapid, cost-effective and comprehensive approach to surveying road networks.


Author(s):  
J. Jeong ◽  
I. Lee

Generating of a highly precise map grows up with development of autonomous driving vehicles. The highly precise map includes a precision of centimetres level unlike an existing commercial map with the precision of meters level. It is important to understand road environments and make a decision for autonomous driving since a robust localization is one of the critical challenges for the autonomous driving car. The one of source data is from a Lidar because it provides highly dense point cloud data with three dimensional position, intensities and ranges from the sensor to target. In this paper, we focus on how to segment point cloud data from a Lidar on a vehicle and classify objects on the road for the highly precise map. In particular, we propose the combination with a feature descriptor and a classification algorithm in machine learning. Objects can be distinguish by geometrical features based on a surface normal of each point. To achieve correct classification using limited point cloud data sets, a Support Vector Machine algorithm in machine learning are used. Final step is to evaluate accuracies of obtained results by comparing them to reference data The results show sufficient accuracy and it will be utilized to generate a highly precise road map.


Author(s):  
N. Yastikli ◽  
Z. Cetin

LiDAR is one of the most effective systems for 3 dimensional (3D) data collection in wide areas. Nowadays, airborne LiDAR data is used frequently in various applications such as object extraction, 3D modelling, change detection and revision of maps with increasing point density and accuracy. The classification of the LiDAR points is the first step of LiDAR data processing chain and should be handled in proper way since the 3D city modelling, building extraction, DEM generation, etc. applications directly use the classified point clouds. The different classification methods can be seen in recent researches and most of researches work with the gridded LiDAR point cloud. In grid based data processing of the LiDAR data, the characteristic point loss in the LiDAR point cloud especially vegetation and buildings or losing height accuracy during the interpolation stage are inevitable. In this case, the possible solution is the use of the raw point cloud data for classification to avoid data and accuracy loss in gridding process. In this study, the point based classification possibilities of the LiDAR point cloud is investigated to obtain more accurate classes. The automatic point based approaches, which are based on hierarchical rules, have been proposed to achieve ground, building and vegetation classes using the raw LiDAR point cloud data. In proposed approaches, every single LiDAR point is analyzed according to their features such as height, multi-return, etc. then automatically assigned to the class which they belong to. The use of un-gridded point cloud in proposed point based classification process helped the determination of more realistic rule sets. The detailed parameter analyses have been performed to obtain the most appropriate parameters in the rule sets to achieve accurate classes. The hierarchical rule sets were created for proposed Approach 1 (using selected spatial-based and echo-based features) and Approach 2 (using only selected spatial-based features) and have been tested in the study area in Zekeriyaköy, Istanbul which includes the partly open areas, forest areas and many types of the buildings. The data set used in this research obtained from Istanbul Metropolitan Municipality which was collected with ‘Riegl LSM-Q680i’ full-waveform laser scanner with the density of 16 points/m2. The proposed automatic point based Approach 1 and Approach 2 classifications successfully produced the ground, building and vegetation classes which were very similar although different features were used.


Sign in / Sign up

Export Citation Format

Share Document