scholarly journals STRATEGIES TO INTEGRATE IMU AND LIDAR SLAM FOR INDOOR MAPPING

Author(s):  
S. Karam ◽  
V. Lehtola ◽  
G. Vosselman

Abstract. In recent years, the importance of indoor mapping increased in a wide range of applications, such as facility management and mapping hazardous sites. The essential technique behind indoor mapping is simultaneous localization and mapping (SLAM) because SLAM offers suitable positioning estimates in environments where satellite positioning is not available. State-of-the-art indoor mobile mapping systems employ Visual-based SLAM or LiDAR-based SLAM. However, Visual-based SLAM is sensitive to textureless environments and, similarly, LiDAR-based SLAM is sensitive to a number of pose configurations where the geometry of laser observations is not strong enough to reliably estimate the six-degree-of-freedom (6DOF) pose of the system. In this paper, we present different strategies that utilize the benefits of the inertial measurement unit (IMU) in the pose estimation and support LiDAR-based SLAM in overcoming these problems. The proposed strategies have been implemented and tested using different datasets and our experimental results demonstrate that the proposed methods do indeed overcome these problems. We conclude that IMU observations increase the robustness of SLAM, which is expected, but also that the best reconstruction accuracy is obtained not with a blind use of all observations but by filtering the measurements with a proposed reliability measure. To this end, our results show promising improvements in reconstruction accuracy.

Author(s):  
T. Lovas ◽  
K. Hadzijanisz ◽  
V. Papp ◽  
A. J. Somogyi

Abstract. There are multiple emerging technologies, devices and integrated equipment to support indoor mapping. The two main categories are the wearable/portable (e.g. hand-held or backpack devices) and the trolley based devices. The most widely used sensors of the integrated systems are the laser scanners (usually profile scanners), camera(s) and the IMU unit. Compared to outdoor mobile mapping systems the main difference is the lack of GNSS signals; localization is usually supported by SLAM (Simultaneous Localization and Mapping) technology, using Kalman-filtering. Current paper discusses the assessment of the potential of trolley-based indoor mobile mapping systems (MMS) by surveying a building part by multiple technologies. Besides conventional land surveying measurements, terrestrial lasers scanning and a backpack-based mobile survey have been carried out. The analysis included cloud-to-cloud comparison as well as CAD-based evaluation focusing on the geometric accuracy of the point clouds. The paper also presents the surveying workflow; on its resource-needs and potential application fields. The paper discusses the data acquisition technologies and procedures and the different quality assessment methods and results. Since an experimental survey was conducted with a backpack-based unit in the same study area, the paper gives a brief overview on how the two different mobile mapping technologies can be applied indoor, and presents the main differences, advantages and drawbacks.


Author(s):  
G. J. Tsai ◽  
K. W. Chiang ◽  
C. H. Chu ◽  
Y. L. Chen ◽  
N. El-Sheimy ◽  
...  

Over the years, Mobile Mapping Systems (MMSs) have been widely applied to urban mapping, path management and monitoring and cyber city, etc. The key concept of mobile mapping is based on positioning technology and photogrammetry. In order to achieve the integration, multi-sensor integrated mapping technology has clearly established. In recent years, the robotic technology has been rapidly developed. The other mapping technology that is on the basis of low-cost sensor has generally used in robotic system, it is known as the Simultaneous Localization and Mapping (SLAM). The objective of this study is developed a prototype of indoor MMS for mobile mapping applications, especially to reduce the costs and enhance the efficiency of data collection and validation of direct georeferenced (DG) performance. The proposed indoor MMS is composed of a tactical grade Inertial Measurement Unit (IMU), the Kinect RGB-D sensor and light detection, ranging (LIDAR) and robot. In summary, this paper designs the payload for indoor MMS to generate the floor plan. In first session, it concentrates on comparing the different positioning algorithms in the indoor environment. Next, the indoor plans are generated by two sensors, Kinect RGB-D sensor LIDAR on robot. Moreover, the generated floor plan will compare with the known plan for both validation and verification.


2021 ◽  
Vol 15 (3) ◽  
pp. 258-267
Author(s):  
Hiroki Matsumoto ◽  
◽  
Yuma Mori ◽  
Hiroshi Masuda

Mobile mapping systems can capture point clouds and digital images of roadside objects. Such data are useful for maintenance, asset management, and 3D map creation. In this paper, we discuss methods for extracting guardrails that separate roadways and walkways. Since there are various shape patterns for guardrails in Japan, flexible methods are required for extracting them. We propose a new extraction method based on point processing and a convolutional neural network (CNN). In our method, point clouds and images are segmented into small fragments, and their features are extracted using CNNs for images and point clouds. Then, features from images and point clouds are combined and investigated using whether they are guardrails or not. Based on our experiments, our method could extract guardrails from point clouds with a high success rate.


Author(s):  
M. Corongiu ◽  
A. Masiero ◽  
G. Tucci

Abstract. Nowadays, mobile mapping systems are widely used to quickly collect reliable geospatial information of relatively large areas: thanks to such characteristics, the number of applications and fields exploiting their usage is continuously increasing. Among such possible applications, mobile mapping systems have been recently considered also by railway system managers to quickly produce and update a database of the geospatial features of such system, also called assets. Despite several vehicles, devices and acquisition methods can be considered for the data collection of the railway system, the predominant one is probably that based on the use of a mobile mapping system mounted on a train, which moves all along the railway tracks, enabling the 3D reproduction of the entire railway track area.Given the large amount of data collected by such mobile mapping, automatic procedures have to be used to speed up the process of extracting the spatial information of interest, i.e. assets positions and characteristics.This paper considers the problem of extracting such information for what concerns cantilever and portal masts, by exploiting a mixed approach. First, a set of candidate areas are extracted and pre-processed by considering certain of their geometric characteristics, mainly extracted by using eigenvalues of the covariance matrix of a point neighborhood. Then, a 3D modified Fisher vector-deep learning neural net is used to classify the candidates. Tests on such approach are conducted in two areas of the Italian railway system.


Author(s):  
M. Soilán ◽  
B. Riveiro ◽  
A. Sánchez-Rodríguez ◽  
L. M. González-deSantos

During the last few years, there has been a huge methodological development regarding the automatic processing of 3D point cloud data acquired by both terrestrial and aerial mobile mapping systems, motivated by the improvement of surveying technologies and hardware performance. This paper presents a methodology that, in a first place, extracts geometric and semantic information regarding the road markings within the surveyed area from Mobile Laser Scanning (MLS) data, and then employs it to isolate street areas where pedestrian crossings are found and, therefore, pedestrians are more likely to cross the road. Then, different safety-related features can be extracted in order to offer information about the adequacy of the pedestrian crossing regarding its safety, which can be displayed in a Geographical Information System (GIS) layer. These features are defined in four different processing modules: Accessibility analysis, traffic lights classification, traffic signs classification, and visibility analysis. The validation of the proposed methodology has been carried out in two different cities in the northwest of Spain, obtaining both quantitative and qualitative results for pedestrian crossing classification and for each processing module of the safety assessment on pedestrian crossing environments.


Author(s):  
M. Soilán ◽  
B. Riveiro ◽  
J. Martínez-Sánchez ◽  
P. Arias

The periodic inspection of certain infrastructure features plays a key role for road network safety and preservation, and for developing optimal maintenance planning that minimize the life-cycle cost of the inspected features. Mobile Mapping Systems (MMS) use laser scanner technology in order to collect dense and precise three-dimensional point clouds that gather both geometric and radiometric information of the road network. Furthermore, time-stamped RGB imagery that is synchronized with the MMS trajectory is also available. In this paper a methodology for the automatic detection and classification of road signs from point cloud and imagery data provided by a LYNX Mobile Mapper System is presented. First, road signs are detected in the point cloud. Subsequently, the inventory is enriched with geometrical and contextual data such as orientation or distance to the trajectory. Finally, semantic content is given to the detected road signs. As point cloud resolution is insufficient, RGB imagery is used projecting the 3D points in the corresponding images and analysing the RGB data within the bounding box defined by the projected points. The methodology was tested in urban and road environments in Spain, obtaining global recall results greater than 95%, and F-score greater than 90%. In this way, inventory data is obtained in a fast, reliable manner, and it can be applied to improve the maintenance planning of the road network, or to feed a Spatial Information System (SIS), thus, road sign information can be available to be used in a Smart City context.


2019 ◽  
Vol 11 (16) ◽  
pp. 1955 ◽  
Author(s):  
Markus Hillemann ◽  
Martin Weinmann ◽  
Markus S. Mueller ◽  
Boris Jutzi

Mobile Mapping is an efficient technology to acquire spatial data of the environment. The spatial data is fundamental for applications in crisis management, civil engineering or autonomous driving. The extrinsic calibration of the Mobile Mapping System is a decisive factor that affects the quality of the spatial data. Many existing extrinsic calibration approaches require the use of artificial targets in a time-consuming calibration procedure. Moreover, they are usually designed for a specific combination of sensors and are, thus, not universally applicable. We introduce a novel extrinsic self-calibration algorithm, which is fully automatic and completely data-driven. The fundamental assumption of the self-calibration is that the calibration parameters are estimated the best when the derived point cloud represents the real physical circumstances the best. The cost function we use to evaluate this is based on geometric features which rely on the 3D structure tensor derived from the local neighborhood of each point. We compare different cost functions based on geometric features and a cost function based on the Rényi quadratic entropy to evaluate the suitability for the self-calibration. Furthermore, we perform tests of the self-calibration on synthetic and two different real datasets. The real datasets differ in terms of the environment, the scale and the utilized sensors. We show that the self-calibration is able to extrinsically calibrate Mobile Mapping Systems with different combinations of mapping and pose estimation sensors such as a 2D laser scanner to a Motion Capture System and a 3D laser scanner to a stereo camera and ORB-SLAM2. For the first dataset, the parameters estimated by our self-calibration lead to a more accurate point cloud than two comparative approaches. For the second dataset, which has been acquired via a vehicle-based mobile mapping, our self-calibration achieves comparable results to a manually refined reference calibration, while it is universally applicable and fully automated.


Sign in / Sign up

Export Citation Format

Share Document