scholarly journals DETECTION OF TERRAIN STRUCTURES IN AIRBORNE LASER SCANNING DATA USING DEEP LEARNING

Author(s):  
B. Kazimi ◽  
F. Thiemann ◽  
M. Sester

Abstract. Automated recognition of terrain structures is a major research problem in many application areas. These structures can be investigated in raster products such as Digital Elevation Models (DEMs) generated from Airborne Laser Scanning (ALS) data. Following the success of deep learning and computer vision techniques on color images, researchers have focused on the application of such techniques in their respective fields. One example is detection of structures in DEM data. DEM data can be used to train deep learning models, but recently, Du et al. (2019) proposed a multi-modal deep learning approach (hereafter referred to as MM) proving that combination of geomorphological information help improve the performance of deep learning models. They reported that combining DEM, slope, and RGB-shaded relief gives the best result among other combinations consisting of curvature, flow accumulation, topographic wetness index, and grey-shaded relief. In this work, we approve and build on top of this approach. First, we use MM and show that combinations of other information such as sky view factors, (simple) local relief models, openness, and local dominance improve model performance even further. Secondly, based on the recently proposed HR-Net (Sun et al., 2019), we build a tinier, Multi-Modal High Resolution network called MM-HR, that outperforms MM. MM-HR learns with fewer parameters (4 millions), and gives an accuracy of 84:2 percent on ZISM50m data compared to 79:2 percent accuracy by MM which learns with more parameters (11 millions). On the dataset of archaeological mining structures from Harz, the top accuracy by MM-HR is 91:7 percent compared to 90:2 by MM.

2019 ◽  
Vol 11 (3) ◽  
pp. 261 ◽  
Author(s):  
Darío Domingo ◽  
Rafael Alonso ◽  
María Teresa Lamelas ◽  
Antonio Luis Montealegre ◽  
Francisco Rodríguez ◽  
...  

This study assesses model temporal transferability using airborne laser scanning (ALS) data acquired over two different dates. Seven forest attributes (i.e. stand density, basal area, squared mean diameter, dominant diameter, tree dominant height, timber volume, and total tree biomass) were estimated using an area-based approach in Mediterranean Aleppo pine forests. Low-density ALS data were acquired in 2011 and 2016 while 147 forest inventory plots were measured in 2013, 2014, and 2016. Single-tree growth models were used to generate concomitant field data for 2011 and 2016. A comparison of five selection techniques and five regression methods were performed to regress field observations against ALS metrics. The selection of the best regression models fitted for each stand attribute, and separately for both 2011 and 2016, was performed following an indirect approach. Model performance and temporal transferability were analyzed by extrapolating the best fitted models from 2011 to 2016 and inversely from 2016 to 2011 using the direct approach. Non-parametric support vector machine with radial kernel was the best regression method with average relative % root mean square error differences of 2.13% for 2011 models and 1.58% for 2016 ones.


2020 ◽  
Vol 12 (3) ◽  
pp. 413 ◽  
Author(s):  
Adrián Pascual ◽  
Juan Guerra-Hernández ◽  
Diogo N. Cosenza ◽  
Vicente Sandoval

The level of spatial co-registration between airborne laser scanning (ALS) and ground data can determine the goodness of the statistical inference used in forest inventories. The importance of positioning methods in the field can increase, depending on the structural complexity of forests. An area-based approach was followed to conduct forest inventory over seven National Forest Inventory (NFI) forest strata in Spain. The benefit of improving the co-registration goodness was assessed through model transferability using low- and high-accuracy positioning methods. Through the inoptimality losses approach, we evaluated the value of good co-registered data, while assessing the influence of forest structural complexity. When using good co-registered data in the 4th NFI, the mean tree height (HTmean), stand basal area (G) and growing stock volume (V) models were 2.6%, 10.6% and 14.7% (in terms of root mean squared error, RMSE %), lower than when using the coordinates from the 3rd NFI. Transferring models built under poor co-registration conditions using more precise data improved the models, on average, 0.3%, 6.0% and 8.8%, while the worsening effect of using low-accuracy data with models built in optimal conditions reached 4.0%, 16.1% and 16.2%. The value of enhanced data co-registration varied between forests. The usability of current NFI data under modern forest inventory approaches can be restricted when combining with ALS data. As this research showed, investing in improving co-registration goodness over a set of samples in NFI projects enhanced model performance, depending on the type of forest and on the assessed forest attributes.


Author(s):  
M. Faltýnová ◽  
P. Nový

Aerial photography was, for decades, an invaluable tool for archaeological prospection, in spite of the limitation of this method to deforested areas. The airborne laser scanning (ALS) method can be nowadays used to map complex areas and suitable complement earlier findings. This article describes visualization and image processing methods that can be applied on digital terrain models (DTMs) to highlight objects hidden in the landscape. Thanks to the analysis of visualized DTM it is possible to understand the landscape evolution including the differentiation between natural processes and human interventions. Different visualization methods were applied on a case study area. A system of parallel tracks hidden in a forest and its surroundings – part of old route called "Devil's Furrow" near the town of Sázava was chosen. The whole area around well known part of Devil's Furrow has not been prospected systematically yet. The data from the airborne laser scanning acquired by the Czech Office for Surveying, Mapping and Cadastre was used. The average density of the point cloud was approximately 1 point/m<sup>2</sup> The goal of the project was to visualize the utmost smallest terrain discontinuities, e.g. tracks and erosion furrows, which some were not wholly preserved. Generally we were interested in objects that are clearly not visible in DTMs displayed in the form of shaded relief. Some of the typical visualization methods were tested (shaded relief, aspect and slope image). To get better results we applied image-processing methods that were successfully used on aerial photographs or hyperspectral images in the past. The usage of different visualization techniques on one site allowed us to verify the natural character of the southern part of Devil’s Furrow and find formations up to now hidden in the forests.


Author(s):  
L. Ma ◽  
Z. Chen ◽  
Y. Li ◽  
D. Zhang ◽  
J. Li ◽  
...  

<p><strong>Abstract.</strong> This paper presents an automated workflow for pixel-wise land cover (LC) classification from multispectral airborne laser scanning (ALS) data using deep learning methods. It mainly contains three procedures: data pre-processing, land cover classification, and accuracy assessment. First, a total of nine raster images with different information were generated from the pre-processed point clouds. These images were assembled into six input data combinations. Meanwhile, the labelled dataset was created using the orthophotos as the ground truth. Also, three deep learning networks were established. Then, each input data combination was used to train and validate each network, which developed eighteen LC classification models with different parameters to predict LC types for pixels. Finally, accuracy assessments and comparisons were done for the eighteen classification results to determine an optimal scheme. The proposed method was tested on six input datasets with three deep learning classification networks (i.e., 1D CNN, 2D CNN, and 3D CNN). The highest overall classification accuracy of 97.2% has been achieved using the proposed 3D CNN. The overall accuracy (OA) of the 2D and 3D CNNs was, on average, 8.4% higher than that of the 1D CNN. Although the OA of the 2D CNN was at most 0.3% lower than that of the 3D CNN, the runtime of the 3D CNN was five times longer than the 2D CNN. Thus, the 2D CNN was the best choice for the multispectral ALS LC classification when considering efficiency. The results demonstrated the proposed methods can successfully classify land covers from multispectral ALS data.</p>


2011 ◽  
Vol 5 (3) ◽  
pp. 196-208 ◽  
Author(s):  
D. F. Laefer ◽  
T. Hinks ◽  
H. Carr ◽  
L. Truong-Hong

2021 ◽  
Vol 13 (4) ◽  
pp. 1917
Author(s):  
Alma Elizabeth Thuestad ◽  
Ole Risbøl ◽  
Jan Ingolf Kleppe ◽  
Stine Barlindhaug ◽  
Elin Rose Myrvoll

What can remote sensing contribute to archaeological surveying in subarctic and arctic landscapes? The pros and cons of remote sensing data vary as do areas of utilization and methodological approaches. We assessed the applicability of remote sensing for archaeological surveying of northern landscapes using airborne laser scanning (LiDAR) and satellite and aerial images to map archaeological features as a basis for (a) assessing the pros and cons of the different approaches and (b) assessing the potential detection rate of remote sensing. Interpretation of images and a LiDAR-based bare-earth digital terrain model (DTM) was based on visual analyses aided by processing and visualizing techniques. 368 features were identified in the aerial images, 437 in the satellite images and 1186 in the DTM. LiDAR yielded the better result, especially for hunting pits. Image data proved suitable for dwellings and settlement sites. Feature characteristics proved a key factor for detectability, both in LiDAR and image data. This study has shown that LiDAR and remote sensing image data are highly applicable for archaeological surveying in northern landscapes. It showed that a multi-sensor approach contributes to high detection rates. Our results have improved the inventory of archaeological sites in a non-destructive and minimally invasive manner.


2021 ◽  
Vol 491 ◽  
pp. 119225
Author(s):  
Einari Heinaro ◽  
Topi Tanhuanpää ◽  
Tuomas Yrttimaa ◽  
Markus Holopainen ◽  
Mikko Vastaranta

Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1864
Author(s):  
Peter Mewis

The effect of vegetation in hydraulic computations can be significant. This effect is important for flood computations. Today, the necessary terrain information for flood computations is obtained by airborne laser scanning techniques. The quality and density of the airborne laser scanning information allows for more extensive use of these data in flow computations. In this paper, known methods are improved and combined into a new simple and objective procedure to estimate the hydraulic resistance of vegetation on the flow in the field. State-of-the-art airborne laser scanner information is explored to estimate the vegetation density. The laser scanning information provides the base for the calculation of the vegetation density parameter ωp using the Beer–Lambert law. In a second step, the vegetation density is employed in a flow model to appropriately account for vegetation resistance. The use of this vegetation parameter is superior to the common method of accounting for the vegetation resistance in the bed resistance parameter for bed roughness. The proposed procedure utilizes newly available information and is demonstrated in an example. The obtained values fit very well with the values obtained in the literature. Moreover, the obtained information is very detailed. In the results, the effect of vegetation is estimated objectively without the assignment of typical values. Moreover, a more structured flow field is computed with the flood around denser vegetation, such as groups of bushes. A further thorough study based on observed flow resistance is needed.


Sign in / Sign up

Export Citation Format

Share Document