scholarly journals AUTOMATIC ROOFTOP EXTRACTION IN STEREO IMAGERY USING DISTANCE AND BUILDING SHAPE REGULARIZED LEVEL SET EVOLUTION

Author(s):  
J. Tian ◽  
T. Krauß ◽  
P. d’Angelo

Automatic rooftop extraction is one of the most challenging problems in remote sensing image analysis. Classical 2D image processing techniques are expensive due to the high amount of features required to locate buildings. This problem can be avoided when 3D information is available. In this paper, we show how to fuse the spectral and height information of stereo imagery to achieve an efficient and robust rooftop extraction. In the first step, the digital terrain model (DTM) and in turn the normalized digital surface model (nDSM) is generated by using a newly step-edge approach. In the second step, the initial building locations and rooftop boundaries are derived by removing the low-level pixels and high-level pixels with higher probability to be trees and shadows. This boundary is then served as the initial level set function, which is further refined to fit the best possible boundaries through distance regularized level-set curve evolution. During the fitting procedure, the edge-based active contour model is adopted and implemented by using the edges indicators extracted from panchromatic image. The performance of the proposed approach is tested by using the WorldView-2 satellite data captured over Munich.

Author(s):  
J. Tian ◽  
T. Krauss ◽  
P. Reinartz

Satellite stereo imagery is becoming a popular data source for derivation of height information. Many new Digital Surface Model (DSM) generation and evaluation methods have been proposed based on these data. A novel Digital Terrain Model (DTM) extraction method based on the DSM from satellite stereo imagery is proposed in this paper. Instead of directly filtering the DSM, firstly a single channel based classification method is proposed. In this step, no multi-spectral information is used, because for some stereo sensors, like Cartosat-1, only panchromatic channels are available. The proposed classification method adopts the random forests method to get initial probability maps of the four main classes in forest regions (high-forest, low-forest, ground, and buildings). To cover the pepper and salt effect of this pixel based classification method, the probability maps are further filtered based on the adaptive Wiener filtering. Then a cube-based greedy strategy is applied in generating the final classification map from these refined probability maps. Secondly, the height distances between neighboring regions are calculated along the boundary regions. These height distances can be used to estimate the relative region heights. Thirdly, the DTM is extracted by subtracting these relative region heights from the DSM in the order of: buildings &ndash; low forest &ndash; high forest. In the end, the extracted DTM is further smoothed using median filter. <br><br> The proposed DTM extraction method is finally tested on satellite stereo imagery captured by Cartosat-1. Quality evaluation is performed by comparing the extracted DTMs to a reference DTM, which is generated from the last return airborne laser scanning point cloud.


2017 ◽  
Vol 17 (4) ◽  
pp. 165-182 ◽  
Author(s):  
Abdallah Azizi ◽  
Kaouther Elkourd ◽  
Zineb Azizi

AbstractEdge based active contour models are adequate to some extent in segmenting images with intensity inhomogeneity but often fail when applied to images with poorly defined or noisy boundaries. Instead of the classical and widely used gradient or edge stopping function which fails to stop contour evolution at such boundaries, we use local binary pattern stopping function to construct a robust and effective active contour model for image segmentation. In fact, comparing to edge stopping function, local binary pattern stopping function accurately distinguishes object’s boundaries and determines the local intensity variation dint to the local binary pattern textons used to classify the image regions. Moreover, the local binary pattern stopping function is applied using a variational level set formulation that forces the level set function to be close to a signed distance function to eliminate costly re-initialization and speed up the motion of the curve. Experiments on several gray level images confirm the advantages and the effectiveness the proposed model.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Jiaxin Wang ◽  
Shifeng Zhao ◽  
Zifeng Liu ◽  
Yun Tian ◽  
Fuqing Duan ◽  
...  

Cerebral vessel segmentation is essential and helpful for the clinical diagnosis and the related research. However, automatic segmentation of brain vessels remains challenging because of the variable vessel shape and high complex of vessel geometry. This study proposes a new active contour model (ACM) implemented by the level-set method for segmenting vessels from TOF-MRA data. The energy function of the new model, combining both region intensity and boundary information, is composed of two region terms, one boundary term and one penalty term. The global threshold representing the lower gray boundary of the target object by maximum intensity projection (MIP) is defined in the first-region term, and it is used to guide the segmentation of the thick vessels. In the second term, a dynamic intensity threshold is employed to extract the tiny vessels. The boundary term is used to drive the contours to evolve towards the boundaries with high gradients. The penalty term is used to avoid reinitialization of the level-set function. Experimental results on 10 clinical brain data sets demonstrate that our method is not only able to achieve better Dice Similarity Coefficient than the global threshold based method and localized hybrid level-set method but also able to extract whole cerebral vessel trees, including the thin vessels.


2013 ◽  
Vol 09 (01) ◽  
pp. 1250004 ◽  
Author(s):  
HAIYING LIU ◽  
YU CHENG ◽  
MAX Q.-H. MENG

A novel variational multiphase level set mathematical model is derived for image segmentation with two contributions. By virtue of eliminating the time-consuming re-initialization procedure and neglecting the property of the level set function during the evolution process, we in this paper present two strategies that may be taken as our contributions to solving these problems. Two scenarios are considered, namely, first, the distance regularization term which is defined by double-well potential function with two minimum points is introduced to our mathematical model for avoiding the re-initialization process. Second, by combining a Tikhonov-like regularization term which can guarantee the smoothness for the evolution curve over the previous method. Numerical simulation studies are presented to verify our new model via evaluating and comparing with existing algorithms.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Ming Gu ◽  
Renfang Wang

A novel active contour model is proposed for segmentation images with inhomogeneity. Firstly, fractional order filter is defined by eight convolution masks corresponding to the image orientation in the eight compass directions. Then, the fractional order differentiation image is obtained and applied to the level set method. Secondly, we defined a new energy functional based on local image information and fractional order differentiation image; the proposed model not only can describe the input image more accurately but also can deal with intensity inhomogeneity. Local fitting term can enhance the ability of the model to deal with intensity inhomogeneity. The defined penalty term is used to reduce the occurrence of false boundaries. Finally, in order to eliminate the time-consuming step of reinitialization and ensure stable evolution of level set function, the Gaussian filtering method is used. Experiments on synthetic and real images show that the proposed model is efficient for images with intensity inhomogeneity and flexible to initial contour.


2013 ◽  
Vol 12 (1) ◽  
pp. 3195-3200
Author(s):  
Sagar Chouksey ◽  
Mayur Ghadle ◽  
Shreya Sharma ◽  
Rohan Puranik

A novel signed pressure force (SPF) based active contour model (ACM) is proposed in this work. It is implemented with help of Gaussian filtering regularized level set method, which first selectively penalizes the level set function to be binary, and then uses a Gaussian smoothing kernel to regularize it. The advantages of this method are as follows. First, a new region-based signed pressure force (SPF) function is proposed, which can efficiently stop the contours at weak or blurred edges. Second, the exterior and interior boundaries can be automatically detected with the initial contour being anywhere in the image. Third, the proposed SPF with ACM has the property of selective local or global segmentation. It can segment not only the desired object but also the other objects. Fourth, the level set function can be easily initialized with a binary function, which is more efficient. The computational cost for traditional re-initialization can also be reduced.


2012 ◽  
Vol 429 ◽  
pp. 271-276 ◽  
Author(s):  
Ji Zhao ◽  
Fu Qun Shao ◽  
Ji Zhao ◽  
Xue Dong Zhang ◽  
Chuang Feng

In this paper, an improved variational formulation for active contours model is introduced to force level set function to become fast and stably close to signed distance function, which can completely eliminate the need of the costly re-initialization procedure. A restriction item that is a nonlinear heat equation with balanced diffusion rate is attached to variational Integrated Active Contour (IAC) model on the basis of analysis on regions and edges information from all channels of the valued-vector images, so that the level set evolution segmentation process becomes fast and stable. In addition, more efficient discretization method with spatial rotation-invariance gradient and divergence operator is proposed as numerical implementation scheme. Finally, the experiments on some images have demonstrated the efficiency, accuracy and robustness of the proposed method.


2019 ◽  
Vol 11 (7) ◽  
pp. 889 ◽  
Author(s):  
Wenjian Ni ◽  
Jiachen Dong ◽  
Guoqing Sun ◽  
Zhiyu Zhang ◽  
Yong Pang ◽  
...  

Applications of stereo imagery acquired by cameras onboard unmanned aerial vehicles (UAVs) as practical forest inventory tools are hindered by the unavailability of ground surface elevation. It is still a challenging issue to remove the elevation of ground surface in leaf-on stereo imagery to extract forest canopy height without the help of lidar data. This study proposed a method for the extraction of forest canopy height through the synthesis of UAV stereo imagery of leaf-on and leaf-off, and further demonstrated that the extracted forest canopy height could be used for the inventory of deciduous forest aboveground biomass (AGB). The points cloud of the leaf-on and leaf-off stereo imagery was firstly extracted by an algorithm of structure from motion (SFM) using the same ground control points (GCP). The digital surface model (DSM) was produced by rasterizing the point cloud of UAV leaf-on. The point cloud of UAV leaf-off was processed by iterative median filtering to remove vegetation points, and the digital terrain model (DTM) was generated by the rasterization of the filtered point cloud. The mean canopy height model (MCHM) was derived from the DSM subtracted by the DTM (i.e., DSM-DTM). Forest AGB maps were generated using models developed based on the MCHM and sampling plots of forest AGB and were evaluated by those of lidar. Results showed that forest AGB maps from UAV stereo imagery were highly correlated with those from lidar data with R2 higher than 0.94 and RMSE lower than 10.0 Mg/ha (i.e., relative RMSE 18.8%). These results demonstrated that UAV stereo imagery could be used as a practical inventory tool for deciduous forest AGB.


2010 ◽  
Vol 121-122 ◽  
pp. 222-227 ◽  
Author(s):  
Rui Jie Feng ◽  
Hui Yan Jiang

A novel edge-based active contour model (ACM) is proposed in this paper. Our edge-based active contour model has many advantages over the conventional active contour models. Firstly, the proposed model can get much smoother contour and needs much less iterations to evolution by being implemented with a special processing named Selectively Binary and Gaussian Filtering Regularized Level Set (SBGFRLS) method. Secondly, we introduce Bilateral Gaussian Filter which can preserve edges to smooth images. So we make weak edges more clear than traditional Gaussian Filter. Thirdly, the level set function can be easily initialized with binary function, which is more efficient to construct than the widely used signed distance function (SDF) because of the special processing. Experiments on synthetic image and segmenting liver from abdominal CT images demonstrate the advantages of the proposed method over geodesic active contours (GAC) in term of both efficiency and accuracy.


2014 ◽  
Vol 687-691 ◽  
pp. 4128-4131
Author(s):  
Hong Wei Han

Image segmentation is one of the most fundamental and important areas in the field of image processing and computer vision. The traditional level set methods need initialize the level set function as a distance function. If the initial contour is selected inappropriate, we may not get the desired ideal segmentation result. In order to solve the problem of level set automation initial, we proposed a new image segmentation algorithm based on level set and marker extraction. First, we extract the internal mark as level set initial curve by using Extended-minima transform. And then, through using the local binary fitting active contour model, we evolve the labeled image to get the final segmentation result. The simulation results show that this method has low computing complexity than the traditional level set method requirements, and can effectively solve the initialization problem of level set.


Sign in / Sign up

Export Citation Format

Share Document