scholarly journals AN ORIGINAL ALGORITHM FOR BIM GENERATION FROM INDOOR SURVEY POINT CLOUDS

Author(s):  
F. Capocchiano ◽  
R. Ravanelli

<p><strong>Abstract.</strong> Nowadays, it is essential to find new strategies, able to perform the first step of the scan-to-BIM process, by retrieving the geometrical information contained in point clouds that are so easily collected through laser scanners and range cameras. This paper presents a new algorithm for the automatic extraction of the layout and the height of a small indoor environment from its point cloud. In particular, the algorithm was tested on a point cloud of 600000 vertices, selected from the dataset of the ISPRS benchmark on indoor modelling. The preliminary results are encouraging: the 3D shape (layout and height) of the investigated room is effectively reconstructed.</p>

2020 ◽  
Vol 17 (3) ◽  
pp. 43
Author(s):  
Nurfadhilah Ruslan ◽  
Nur Syazwani Rosadlan ◽  
Nabilah Naharudin ◽  
Zulkiflee Abd Latif

Walkability is one of the keys in developing a sustainable city. These days, many cities have considered enhancing walkability for pedestrian paths to ensure the seamless walking experience for people to reach their destination. Therefore, it is very important to have a good walking environment so people will find walking pleasant. However, there was a lack of studies attempting to include indoor walking environments in their walkability analysis. Most of them only consider outdoor walking paths. This might be due to the difficulties in modelling the indoor walking environment. With the advance technology of laser scanning, it might be possible to develop an indoor walking path by using point clouds collected for a building. The usage of point clouds could make it easier to segment the building elements and obstacles in an indoor environment. In order to produce an indoor map, it is important to reconstruct the building elements such as wall, ceiling, window and door. Therefore, this paper aims to generate the indoor walking path using laser scanning point clouds showing all the options to the pedestrians.Keywords: Walkability, indoor mapping, point cloud, laser scanning, mobile laser scanning


2020 ◽  
Vol 12 (18) ◽  
pp. 2923
Author(s):  
Tengfei Zhou ◽  
Xiaojun Cheng ◽  
Peng Lin ◽  
Zhenlun Wu ◽  
Ensheng Liu

Due to the existence of environmental or human factors, and because of the instrument itself, there are many uncertainties in point clouds, which directly affect the data quality and the accuracy of subsequent processing, such as point cloud segmentation, 3D modeling, etc. In this paper, to address this problem, stochastic information of point cloud coordinates is taken into account, and on the basis of the scanner observation principle within the Gauss–Helmert model, a novel general point-based self-calibration method is developed for terrestrial laser scanners, incorporating both five additional parameters and six exterior orientation parameters. For cases where the instrument accuracy is different from the nominal ones, the variance component estimation algorithm is implemented for reweighting the outliers after the residual errors of observations obtained. Considering that the proposed method essentially is a nonlinear model, the Gauss–Newton iteration method is applied to derive the solutions of additional parameters and exterior orientation parameters. We conducted experiments using simulated and real data and compared them with those two existing methods. The experimental results showed that the proposed method could improve the point accuracy from 10−4 to 10−8 (a priori known) and 10−7 (a priori unknown), and reduced the correlation among the parameters (approximately 60% of volume). However, it is undeniable that some correlations increased instead, which is the limitation of the general method.


2018 ◽  
Vol 106 (1) ◽  
pp. 19-24
Author(s):  
Damian Biel ◽  
Tomasz Lipecki

Abstract Nowadays, the growing popularity of terrestrial laser scanners (TLS) allows to obtain a point cloud of many industrial objects along with classic surveying. However, the quality and model’s accuracy in comparison to a real shape seem to be a question, that must be further researched. It is crucial especially for Finite Element Method (FEM) analysis, which, being a part of technical design, estimate the values of construction’s dislocation and deformation. The article describes objects such as headgear with steel support and 4-post headframe with steel sheers. Both supports and sheers were modelled basing on point clouds. All the models were compared to the point cloud. The differences in models’ shape were calculated and the maximal values were determined. The results’ usefulness in FEM analysis was described.


Author(s):  
H. A. Lauterbach ◽  
D. Borrmann ◽  
A. Nüchter

3D laser scanners are typically not able to collect color information. Therefore coloring is often done by projecting photos of an additional camera to the 3D scans. The capturing process is time consuming and therefore prone to changes in the environment. The appearance of the colored point cloud is mainly effected by changes of lighting conditions and corresponding camera settings. In case of panorama images these exposure variations are typically corrected by radiometrical aligning the input images to each other. In this paper we adopt existing methods for panorama optimization in order to correct the coloring of point clouds. Therefore corresponding pixels from overlapping images are selected by using geometrically closest points of the registered 3D scans and their neighboring pixels in the images. The dynamic range of images in raw format allows for correction of large exposure differences. Two experiments demonstrate the abilities of the approach.


Author(s):  
Gülhan Benli

Since the 2000s, terrestrial laser scanning, as one of the methods used to document historical edifices in protected areas, has taken on greater importance because it mitigates the difficulties associated with working on large areas and saves time while also making it possible to better understand all the particularities of the area. Through this technology, comprehensive point data (point clouds) about the surface of an object can be generated in a highly accurate three-dimensional manner. Furthermore, with the proper software this three-dimensional point cloud data can be transformed into three-dimensional rendering/mapping/modeling and quantitative orthophotographs. In this chapter, the study will present the results of terrestrial laser scanning and surveying which was used to obtain three-dimensional point clouds through three-dimensional survey measurements and scans of silhouettes of streets in Fatih in Historic Peninsula in Istanbul, which were then transposed into survey images and drawings. The study will also cite examples of the facade mapping using terrestrial laser scanning data in Istanbul Historic Peninsula Project.


Author(s):  
Lee J. Wells ◽  
Mohammed S. Shafae ◽  
Jaime A. Camelio

Ever advancing sensor and measurement technologies continually provide new opportunities for knowledge discovery and quality control (QC) strategies for complex manufacturing systems. One such state-of-the-art measurement technology currently being implemented in industry is the 3D laser scanner, which can rapidly provide millions of data points to represent an entire manufactured part’s surface. This gives 3D laser scanners a significant advantage over competing technologies that typically provide tens or hundreds of data points. Consequently, data collected from 3D laser scanners have a great potential to be used for inspecting parts for surface and feature abnormalities. The current use of 3D point clouds for part inspection falls into two main categories; 1) Extracting feature parameters, which does not complement the nature of 3D point clouds as it wastes valuable data and 2) An ad-hoc manual process where a visual representation of a point cloud (usually as deviations from nominal) is analyzed, which tends to suffer from slow, inefficient, and inconsistent inspection results. Therefore our paper proposes an approach to automate the latter approach to 3D point cloud inspection. The proposed approach uses a newly developed adaptive generalized likelihood ratio (AGLR) technique to identify the most likely size, shape, and magnitude of a potential fault within the point cloud, which transforms the ad-hoc visual inspection approach to a statistically viable automated inspection solution. In order to aid practitioners in designing and implementing an AGLR-based inspection process, our paper also reports the performance of the AGLR with respect to the probability of detecting specific size and magnitude faults in addition to the probability of a false alarms.


Author(s):  
T. Yamakawa ◽  
K. Fukano ◽  
R. Onodera ◽  
H. Masuda

Mobile mapping systems (MMS) can capture dense point-clouds of urban scenes. For visualizing realistic scenes using point-clouds, RGB colors have to be added to point-clouds. To generate colored point-clouds in a post-process, each point is projected onto camera images and a RGB color is copied to the point at the projected position. However, incorrect colors are often added to point-clouds because of the misalignment of laser scanners, the calibration errors of cameras and laser scanners, or the failure of GPS acquisition. In this paper, we propose a new method to correct RGB colors of point-clouds captured by a MMS. In our method, RGB colors of a point-cloud are corrected by comparing intensity images and RGB images. However, since a MMS outputs sparse and anisotropic point-clouds, regular images cannot be obtained from intensities of points. Therefore, we convert a point-cloud into a mesh model and project triangle faces onto image space, on which regular lattices are defined. Then we extract edge features from intensity images and RGB images, and detect their correspondences. In our experiments, our method worked very well for correcting RGB colors of point-clouds captured by a MMS.


Author(s):  
Y. D. Rajendra ◽  
S. C. Mehrotra ◽  
K. V. Kale ◽  
R. R. Manza ◽  
R. K. Dhumal ◽  
...  

Terrestrial Laser Scanners (TLS) are used to get dense point samples of large object’s surface. TLS is new and efficient method to digitize large object or scene. The collected point samples come into different formats and coordinates. Different scans are required to scan large object such as heritage site. Point cloud registration is considered as important task to bring different scans into whole 3D model in one coordinate system. Point clouds can be registered by using one of the three ways or combination of them, Target based, feature extraction, point cloud based. For the present study we have gone through Point Cloud Based registration approach. We have collected partially overlapped 3D Point Cloud data of Department of Computer Science & IT (DCSIT) building located in Dr. Babasaheb Ambedkar Marathwada University, Aurangabad. To get the complete point cloud information of the building we have taken 12 scans, 4 scans for exterior and 8 scans for interior façade data collection. There are various algorithms available in literature, but Iterative Closest Point (ICP) is most dominant algorithms. The various researchers have developed variants of ICP for better registration process. The ICP point cloud registration algorithm is based on the search of pairs of nearest points in a two adjacent scans and calculates the transformation parameters between them, it provides advantage that no artificial target is required for registration process. We studied and implemented three variants Brute Force, KDTree, Partial Matching of ICP algorithm in MATLAB. The result shows that the implemented version of ICP algorithm with its variants gives better result with speed and accuracy of registration as compared with CloudCompare Open Source software.


Author(s):  
R. A. Persad ◽  
C. Armenakis

The co-registration of 3D point clouds has received considerable attention from various communities, particularly those in photogrammetry, computer graphics and computer vision. Although significant progress has been made, various challenges such as coarse alignment using multi-sensory data with different point densities and minimal overlap still exist. There is a need to address such data integration issues, particularly with the advent of new data collection platforms such as the unmanned aerial vehicles (UAVs). In this study, we propose an approach to align 3D point clouds derived photogrammetrically from UAV approximately vertical images with point clouds measured by terrestrial laser scanners (TLS). The method begins by automatically extracting 3D surface keypoints on both point cloud datasets. Afterwards, regions of interest around each keypoint are established to facilitate the establishment of scale-invariant descriptors for each of them. We use the popular SURF descriptor for matching the keypoints. In our experiments, we report the accuracies of the automatically derived transformation parameters in comparison to manually-derived reference parameter data.


Author(s):  
G. Takahashi ◽  
H. Masuda

<p><strong>Abstract.</strong> MMSs allow us to obtain detailed 3D information around roads. Especially, LiDAR point clouds can be used for map generation and infrastructure management. For practical uses, however, it is necessary to add labels to a part of the points since various objects can be included in the point clouds. Existing automatic classification methods are not completely error-free, and may incorrectly classify objects. Therefore, even though automatic methods are applied to the point clouds, operators have to verify the labels. While operators classify the point clouds manually, selecting 3D points tasks in 3D views are difficult. In this paper, we propose a new point-cloud image based on the trajectories of MMSs. We call our point-cloud image <i>trajectory-based point-cloud image</i>. Although the image is distorted because it is generated based on rotation angles of laser scanners, we confirmed that most objects can be recognized from point-cloud images by checking main road facilities. We evaluated how efficient the annotation can be done using our method, and the results show that operators could add annotations to point-cloud images more efficiently.</p>


Sign in / Sign up

Export Citation Format

Share Document