scholarly journals ARCHITECTURAL HERITAGE RECOGNITION IN HISTORICAL FILM FOOTAGE USING NEURAL NETWORKS

Author(s):  
F. Condorelli ◽  
F. Rinaudo ◽  
F. Salvadore ◽  
S. Tagliaventi

<p><strong>Abstract.</strong> Researching historical archives for material suitable for photogrammetry is essential for the documentation and 3D reconstruction of Cultural Heritage, especially when this heritage has been lost or transformed over time. This research presents an innovative workflow which combines the photogrammetric procedure with Machine Learning for the processing of historical film footage. A Neural Network is trained to automatically detect frames in which architectural heritage appears. These frames are subsequently processed using photogrammetry and finally the resulting model is assessed for metric quality. This paper proposes best practises in training and validation on a Cultural Heritage asset. The algorithm was tested through a case study of the Tour Saint Jacques in Paris for which an entirely new dataset was created. The findings are encouraging both in terms of saving human effort and of improvement of the photogrammetric survey pipeline. This new tool can help researchers to better manage and organize historical information.</p>


2021 ◽  
Vol 2042 (1) ◽  
pp. 012002
Author(s):  
Roberto Castello ◽  
Alina Walch ◽  
Raphaël Attias ◽  
Riccardo Cadei ◽  
Shasha Jiang ◽  
...  

Abstract The integration of solar technology in the built environment is realized mainly through rooftop-installed panels. In this paper, we leverage state-of-the-art Machine Learning and computer vision techniques applied on overhead images to provide a geo-localization of the available rooftop surfaces for solar panel installation. We further exploit a 3D building database to associate them to the corresponding roof geometries by means of a geospatial post-processing approach. The stand-alone Convolutional Neural Network used to segment suitable rooftop areas reaches an intersection over union of 64% and an accuracy of 93%, while a post-processing step using building database improves the rejection of false positives. The model is applied to a case study area in the canton of Geneva and the results are compared with another recent method used in the literature to derive the realistic available area.



2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Idris Kharroubi ◽  
Thomas Lim ◽  
Xavier Warin

AbstractWe study the approximation of backward stochastic differential equations (BSDEs for short) with a constraint on the gains process. We first discretize the constraint by applying a so-called facelift operator at times of a grid. We show that this discretely constrained BSDE converges to the continuously constrained one as the mesh grid converges to zero. We then focus on the approximation of the discretely constrained BSDE. For that we adopt a machine learning approach. We show that the facelift can be approximated by an optimization problem over a class of neural networks under constraints on the neural network and its derivative. We then derive an algorithm converging to the discretely constrained BSDE as the number of neurons goes to infinity. We end by numerical experiments.



Author(s):  
E. Yu. Shchetinin

The recognition of human emotions is one of the most relevant and dynamically developing areas of modern speech technologies, and the recognition of emotions in speech (RER) is the most demanded part of them. In this paper, we propose a computer model of emotion recognition based on an ensemble of bidirectional recurrent neural network with LSTM memory cell and deep convolutional neural network ResNet18. In this paper, computer studies of the RAVDESS database containing emotional speech of a person are carried out. RAVDESS-a data set containing 7356 files. Entries contain the following emotions: 0 – neutral, 1 – calm, 2 – happiness, 3 – sadness, 4 – anger, 5 – fear, 6 – disgust, 7 – surprise. In total, the database contains 16 classes (8 emotions divided into male and female) for a total of 1440 samples (speech only). To train machine learning algorithms and deep neural networks to recognize emotions, existing audio recordings must be pre-processed in such a way as to extract the main characteristic features of certain emotions. This was done using Mel-frequency cepstral coefficients, chroma coefficients, as well as the characteristics of the frequency spectrum of audio recordings. In this paper, computer studies of various models of neural networks for emotion recognition are carried out on the example of the data described above. In addition, machine learning algorithms were used for comparative analysis. Thus, the following models were trained during the experiments: logistic regression (LR), classifier based on the support vector machine (SVM), decision tree (DT), random forest (RF), gradient boosting over trees – XGBoost, convolutional neural network CNN, recurrent neural network RNN (ResNet18), as well as an ensemble of convolutional and recurrent networks Stacked CNN-RNN. The results show that neural networks showed much higher accuracy in recognizing and classifying emotions than the machine learning algorithms used. Of the three neural network models presented, the CNN + BLSTM ensemble showed higher accuracy.



2014 ◽  
Vol 10 (S306) ◽  
pp. 279-287 ◽  
Author(s):  
Michael Hobson ◽  
Philip Graff ◽  
Farhan Feroz ◽  
Anthony Lasenby

AbstractMachine-learning methods may be used to perform many tasks required in the analysis of astronomical data, including: data description and interpretation, pattern recognition, prediction, classification, compression, inference and many more. An intuitive and well-established approach to machine learning is the use of artificial neural networks (NNs), which consist of a group of interconnected nodes, each of which processes information that it receives and then passes this product on to other nodes via weighted connections. In particular, I discuss the first public release of the generic neural network training algorithm, calledSkyNet, and demonstrate its application to astronomical problems focusing on its use in the BAMBI package for accelerated Bayesian inference in cosmology, and the identification of gamma-ray bursters. TheSkyNetand BAMBI packages, which are fully parallelised using MPI, are available athttp://www.mrao.cam.ac.uk/software/.



Author(s):  
Kenta Shirane ◽  
Takahiro Yamamoto ◽  
Hiroyuki Tomiyama

In this paper, we present a case study on approximate multipliers for MNIST Convolutional Neural Network (CNN). We apply approximate multipliers with different bit-width to the convolution layer in MNIST CNN, evaluate the accuracy of MNIST classification, and analyze the trade-off between approximate multiplier’s area, critical path delay and the accuracy. Based on the results of the evaluation and analysis, we propose a design methodology for approximate multipliers. The approximate multipliers consist of some partial products, which are carefully selected according to the CNN input. With this methodology, we further reduce the area and the delay of the multipliers with keeping high accuracy of the MNIST classification.



2021 ◽  
Author(s):  
Wael Alnahari

Abstract In this paper, I proposed an iris recognition system by using deep learning via neural networks (CNN). Although CNN is used for machine learning, the recognition is achieved by building a non-trained CNN network with multiple layers. The main objective of the code the test pictures’ category (aka person name) with a high accuracy rate after having extracted enough features from training pictures of the same category which are obtained from a that I added to the code. I used IITD iris which included 10 iris pictures for 223 people.



2021 ◽  
Author(s):  
Ruslan Chernyshev ◽  
Mikhail Krinitskiy ◽  
Viktor Stepanenko

&lt;p&gt;This work is devoted to development of neural networks for identification of partial differential equations (PDE) solved in the land surface scheme of INM RAS Earth System model (ESM). Atmospheric and climate models are in the top of the most demanding for supercomputing resources among research applications. Spatial resolution and a multitude of physical parameterizations used in ESMs continuously increase. Most of parameters are still poorly constrained, many of them cannot be measured directly. To optimize model calibration time, using neural networks looks a promising approach. Neural networks are already in wide use in satellite imaginary (Su Jeong Lee, et al, 2015; Krinitskiy M. et al, 2018) and for calibrating parameters of land surface models (Yohei Sawada el al, 2019). Neural networks have demonstrated high efficiency in solving conventional problems of mathematical physics (Lucie P. Aarts el al, 2001; Raissi M. et al, 2020).&amp;#160;&lt;/p&gt;&lt;p&gt;We develop a neural networks for optimizing parameters of nonlinear soil heat and moisture transport equation set. For developing we used Python3 based programming tools implemented on GPUs and Ascend platform, provided by Huawei. Because of using hybrid approach combining neural network and classical thermodynamic equations, the major purpose was finding the way to correctly calculate backpropagation gradient of error function, because model trains and is being validated on the same temperature data, while model output is heat equation parameter, which is typically not known. Neural network model has been runtime trained using reference thermodynamic model calculation with prescribed parameters, every next thermodynamic model step has been used for fitting the neural network until it reaches the loss function tolerance.&lt;/p&gt;&lt;p&gt;Literature:&lt;/p&gt;&lt;p&gt;1. &amp;#160; &amp;#160; Aarts, L.P., van der Veer, P. &amp;#8220;Neural Network Method for Solving Partial Differential Equations&amp;#8221;. Neural Processing Letters 14, 261&amp;#8211;271 (2001). https://doi.org/10.1023/A:1012784129883&lt;/p&gt;&lt;p&gt;2. &amp;#160; &amp;#160; Raissi, M., P. Perdikaris and G. Karniadakis. &amp;#8220;Physics Informed Deep Learning (Part I): Data-driven Solutions of Nonlinear Partial Differential Equations.&amp;#8221; ArXiv abs/1711.10561 (2017): n. pag.&lt;/p&gt;&lt;p&gt;3. &amp;#160; &amp;#160; Lee, S.J., Ahn, MH. &amp; Lee, Y. Application of an artificial neural network for a direct estimation of atmospheric instability from a next-generation imager. Adv. Atmos. Sci. 33, 221&amp;#8211;232 (2016). https://doi.org/10.1007/s00376-015-5084-9&lt;/p&gt;&lt;p&gt;4. &amp;#160; &amp;#160; Krinitskiy M, Verezemskaya P, Grashchenkov K, Tilinina N, Gulev S, Lazzara M. Deep Convolutional Neural Networks Capabilities for Binary Classification of Polar Mesocyclones in Satellite Mosaics. Atmosphere. 2018; 9(11):426.&lt;/p&gt;&lt;p&gt;5. &amp;#160; &amp;#160; Sawada, Y.. &amp;#8220;Machine learning accelerates parameter optimization and uncertainty assessment of a land surface model.&amp;#8221; ArXiv abs/1909.04196 (2019): n. pag.&lt;/p&gt;&lt;p&gt;6. &amp;#160; &amp;#160; Shufen Pan et al. Evaluation of global terrestrial evapotranspiration using state-of-the-art approaches in remote sensing, machine learning and land surface modeling. Hydrol. Earth Syst. Sci., 24, 1485&amp;#8211;1509 (2020)&lt;/p&gt;&lt;p&gt;7. &amp;#160; &amp;#160; Chaney, Nathaniel &amp; Herman, Jonathan &amp; Ek, M. &amp; Wood, Eric. (2016). Deriving Global Parameter Estimates for the Noah Land Surface Model using FLUXNET and Machine Learning: Improving Noah LSM Parameters. Journal of Geophysical Research: Atmospheres. 121. 10.1002/2016JD024821.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;



This chapter presents an introductory overview of the application of computational intelligence in biometrics. Starting with the historical background on artificial intelligence, the chapter proceeds to the evolutionary computing and neural networks. Evolutionary computing is an ability of a computer system to learn and evolve over time in a manner similar to humans. The chapter discusses swarm intelligence, which is an example of evolutionary computing, as well as chaotic neural network, which is another aspect of intelligent computing. At the end, special concentration is given to a particular application of computational intelligence—biometric security.



Author(s):  
Arunaben Prahladbhai Gurjar ◽  
Shitalben Bhagubhai Patel

The new era of the world uses artificial intelligence (AI) and machine learning. The combination of AI and machine learning is called artificial neural network (ANN). Artificial neural network can be used as hardware or software-based components. Different topology and learning algorithms are used in artificial neural networks. Artificial neural network works similarly to the functionality of the human nervous system. ANN is working as a nonlinear computing model based on activities performed by human brain such as classification, prediction, decision making, visualization just by considering previous experience. ANN is used to solve complex, hard-to-manage problems by accruing knowledge about the environment. There are different types of artificial neural networks available in machine learning. All types of artificial neural networks work based of mathematical operation and require a set of parameters to get results. This chapter gives overview on the various types of neural networks like feed forward, recurrent, feedback, classification-predication.



Sign in / Sign up

Export Citation Format

Share Document