scholarly journals MULTISPECTRAL PHOTOGRAMMETRIC DATA ACQUISITION AND PROCESSING FORWALL PAINTINGS STUDIES

Author(s):  
A. Pamart ◽  
O. Guillon ◽  
S. Faraci ◽  
E. Gattet ◽  
M. Genevois ◽  
...  

In the field of wall paintings studies different imaging techniques are commonly used for the documentation and the decision making in term of conservation and restoration. There is nowadays some challenging issues to merge scientific imaging techniques in a multimodal context (i.e. multi-sensors, multi-dimensions, multi-spectral and multi-temporal approaches). For decades those CH objects has been widely documented with Technical Photography (TP) which gives precious information to understand or retrieve the painting layouts and history. More recently there is an increasing demand of the use of digital photogrammetry in order to provide, as one of the possible output, an orthophotomosaic which brings a possibility for metrical quantification of conservators/restorators observations and actions planning. This paper presents some ongoing experimentations of the LabCom MAP-CICRP relying on the assumption that those techniques can be merged through a common pipeline to share their own benefits and create a more complete documentation.

2018 ◽  
Vol 40 ◽  
pp. 03034
Author(s):  
Luís Carvalho ◽  
Elsa Carvalho ◽  
Rui Aleixo ◽  
Maria Manuela C. L. Lima

This work describes an experimental study based on a simplified model of a vertical sluice gate installed in a channel with a moving bed of glass spheres with 2 mm diameter. The originated scour cavity and downstream dune were studied. The influence of the apron length and the downstream tailwater depth were also analysed. Imaging techniques provided the tools to this investigation. The data acquisition and processing consisted in acquiring images of the flow and automatically process them to identify the water-sediments interface and the longitudinal profile of sediments’ bed at different instants.


2011 ◽  
Vol 483 ◽  
pp. 492-496
Author(s):  
Jin Yun Jiang ◽  
Da Ming Wu ◽  
Ya Jun Zhang ◽  
Jian Zhuang

Micro heat exchanger, with its advantages such as small volume, light weight, high efficiency etc. has an increasing demand of market needs and applications. To evaluate the performance of a particular micro heat exchanger, this paper provides a novel platform for testing and inspection. Four sections are involved including the working principle of the experiment platform, component parts and arrangement, experiment and the data analysis. As for the hardware, precision instruments such as pressure gauge, flow meter and temperature sensors are utilized in the experiment in the data acquisition section. While for the software aspect, data acquisition and processing system based on the Visual Basic is applied in this experiment. The effect of the platform for micro heat exchanger is supported by the results of the testing .


1990 ◽  
Vol 51 (C2) ◽  
pp. C2-939-C2-942 ◽  
Author(s):  
N. DINER ◽  
A. WEILL ◽  
J. Y. COAIL ◽  
J. M. COUDEVILLE

J ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 147-153
Author(s):  
Paula Morella ◽  
María Pilar Lambán ◽  
Jesús Antonio Royo ◽  
Juan Carlos Sánchez

Among the new trends in technology that have emerged through the Industry 4.0, Cyber Physical Systems (CPS) and Internet of Things (IoT) are crucial for the real-time data acquisition. This data acquisition, together with its transformation in valuable information, are indispensable for the development of real-time indicators. Moreover, real-time indicators provide companies with a competitive advantage over the competition since they enhance the calculus and speed up the decision-making and failure detection. Our research highlights the advantages of real-time data acquisition for supply chains, developing indicators that would be impossible to achieve with traditional systems, improving the accuracy of the existing ones and enhancing the real-time decision-making. Moreover, it brings out the importance of integrating technologies 4.0 in industry, in this case, CPS and IoT, and establishes the main points for a future research agenda of this topic.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yanfei Yang ◽  
Mingzhu Xu ◽  
Aimin Liang ◽  
Yan Yin ◽  
Xin Ma ◽  
...  

AbstractIn this study, a wearable multichannel human magnetocardiogram (MCG) system based on a spin exchange relaxation-free regime (SERF) magnetometer array is developed. The MCG system consists of a magnetically shielded device, a wearable SERF magnetometer array, and a computer for data acquisition and processing. Multichannel MCG signals from a healthy human are successfully recorded simultaneously. Independent component analysis (ICA) and empirical mode decomposition (EMD) are used to denoise MCG data. MCG imaging is realized to visualize the magnetic and current distribution around the heart. The validity of the MCG signals detected by the system is verified by electrocardiogram (ECG) signals obtained at the same position, and similar features and intervals of cardiac signal waveform appear on both MCG and ECG. Experiments show that our wearable MCG system is reliable for detecting MCG signals and can provide cardiac electromagnetic activity imaging.


1989 ◽  
Vol 24 (9) ◽  
pp. 66-71
Author(s):  
Z. Defu ◽  
Y. Peigen ◽  
S. Zhongxiu

Sign in / Sign up

Export Citation Format

Share Document