scholarly journals INDOOR SPACE ROUTING GRAPHS: VISIBILITY, ENCODING, ENCRYPTION AND ATTENUATION

Author(s):  
G. Sithole

<p><strong>Abstract.</strong> The conventional approach to path planning for indoor navigation is to infer routes from a subdivided floor map of the indoor space. The floor map describes the spatial geometry of the space. Contained in this floor map are logical units called subspaces. For the purpose of path planning the possible routes between the subspaces have to be modelled. Typical these models employing a graph structures, or skeletons, in which the interconnected subspaces (e.g., rooms, corridors, etc.) are represented as linked nodes, i.e. a graph.</p><p>This paper presents a novel method for creating generalised graphs of indoor spaces that doesn’t require the subdivision of indoor space. The method creates the generalised graph by gradually simplifying/in-setting the floor map until a graph is obtained, a process described here as chained deflation. The resulting generalised graph allows for more flexible and natural paths to be determined within the indoor environment. Importantly the method allows the indoor space to be encoded and encrypted and supplied to users in a way that emulates the use of physical keys in the real world. Another important novelty of the method is that the space described by the graph is adaptable. The space described by the graph can be deflated or inflated according to the needs of the path planning. Finally, the proposed method can be readily generalised to the third dimension.</p><p>The concept and logic of the method are explained. A full implementation of the method will be discussed in a future paper.</p>

2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Hyo-jin Jung ◽  
Jiyeong Lee

Different indoor representation methods have been studied for their ability to provide indoor location-based services (LBS). Among them, omnidirectional imaging is one of the most typical and simple methods for representing an indoor space. However, a georeferenced omnidirectional image cannot be used for simple attribute searches, spatial queries, and spatial awareness analyses. To perform these functions, topological data are needed to define the features of and spatial relationships among spatial objects including indoor spaces as well as facilities like CCTV cameras considered in patrol service applications. Therefore, this study proposes an indoor space application data model for an indoor patrol service that can implement functions suited to linking indoor space data and service objects. In order to do this, the study presents a method for linking data between omnidirectional images representing indoor spaces and topological data on indoor spaces based on the concept of IndoorGML. Also, we conduct an experimental implementation of the integrated 3D indoor navigation model for patrol service using GIS data. Based on the results, we evaluate the benefits of using such a 3D data fusion method that integrates omnidirectional images with vector-based topological data models based on IndoorGML for providing indoor LBS in built environments.


Author(s):  
Hao Dong ◽  
Jieqi Kang ◽  
James Schafer ◽  
Aura Ganz

In this paper the authors introduce PERCEPT-V indoor navigation for the blind system. PERCEPT-V enhances PERCEPT system by enabling visually impaired users to navigate in open indoor spaces that differ in size and lighting conditions. The authors deploy visual tags in the environment at specific landmarks and introduce a visual tag detection algorithm using a sampling probe and cascading approach. The authors provide guidelines for the visual tag size, which is a function of various environmental, and usage scenarios, which differ in lighting, dimensions of the indoor environment and angle of usage. The authors also developed a Smartphone based user interface for the visually impaired users that uses Android accessibility features.


Author(s):  
M. Xu ◽  
S. Wei ◽  
S. Zlatanova ◽  
R. Zhang

At present, 87&amp;thinsp;% of people’s activities are in indoor environment; indoor navigation has become a research issue. As the building structures for people’s daily life are more and more complex, many obstacles influence humans’ moving. Therefore it is essential to provide an accurate and efficient indoor path planning. Nowadays there are many challenges and problems in indoor navigation. Most existing path planning approaches are based on 2D plans, pay more attention to the geometric configuration of indoor space, often ignore rich semantic information of building components, and mostly consider simple indoor layout without taking into account the furniture. Addressing the above shortcomings, this paper uses BIM (IFC) as the input data and concentrates on indoor navigation considering obstacles in the multi-floor buildings. After geometric and semantic information are extracted, 2D and 3D space subdivision methods are adopted to build the indoor navigation network and to realize a path planning that avoids obstacles. The 3D space subdivision is based on triangular prism. The two approaches are verified by the experiments.


2017 ◽  
Author(s):  
Steven M. Weisberg ◽  
Daniel Badgio ◽  
Anjan Chatterjee

AbstractKnowing where north is provides a navigator with invaluable information for learning and recalling a space, particularly in places with limited navigational cues, like complex indoor environments. Although north is effectively used by orienteers, pilots, and military personnel, very little is known about whether non-expert populations can or will use north to create an accurate representation of an indoor space. In the current study, we taught people two non-overlapping routes through a complex indoor environment, with which they were not familiar – a university hospital with few windows and several turns. Along one route, they wore a vibrotactile compass on their arm, which vibrated continuously indicating the direction of north. Along the other route, they were only told where north was at the start of the route. At the beginning, the end, and back at the beginning of each route, participants pointed to well-known landmarks in the surrounding city and campus (external landmarks), and newly-learned landmarks in the hospital (internal landmarks). We found improved performance with the compass only for external landmarks, driven by people’s use of the availability of north to orient these judgments. No such improved orientation occurred for the internal landmarks. These findings reveal the utility of vibrotactile compasses for learning new indoor spaces. We speculate that such cues help users map new spaces onto familiar spaces or to familiar reference frames.


2020 ◽  
Vol 10 (20) ◽  
pp. 7218
Author(s):  
Qun Sun ◽  
Xiaoguang Zhou ◽  
Dongyang Hou

With the continuous development of indoor positioning technology, various indoor applications, such as indoor navigation and emergency rescue, have gradually received widespread attention. Indoor navigation and emergency rescue require access to a variety of indoor space information, such as accurate geometric information, rich semantic information and indoor spatial adjacency information; hence, a suitable 3D indoor model is needed. However, the available models, such as BIM and CityGML, mainly represent geometric and semantic information of indoor spaces, and rarely describe the topological adjacency relationship of interior spaces. To address the requirements of indoor navigation and emergency rescue, a simplified 3D indoor model is proposed in this research. The building components and indoor functional spaces of buildings are described in a simplified way. The geometric and semantic information are described based on CityGML, and the topological relationships of indoor adjacent spaces are represented by CityGML XLinks. While describing the indoor level of detail (LOD) of buildings in detail, the model simplifies building components and indoor spaces, which can preserve the characteristics of indoor spaces to the maximum extent and serve as a basis for indoor applications.


2020 ◽  
Vol 9 (2) ◽  
pp. 66 ◽  
Author(s):  
Seula Park ◽  
Kiyun Yu ◽  
Jiyoung Kim

The increasing complexity of modern buildings has challenged the mobility of people with disabilities (PWD) in the indoor environment. To help overcome this problem, this paper proposes a data model that can be easily applied to indoor spatial information services for people with disabilities. In the proposed model, features are defined based on relevant regulations that stipulate significant mobility factors for people with disabilities. To validate the model’s capability to describe the indoor spaces in terms that are relevant to people with mobility disabilities, the model was used to generate data in a path planning application, considering two different cases in a shopping mall. The application confirmed that routes for people with mobility disabilities are significantly different from those of ordinary pedestrians, in a way that reflects features and attributes defined in the proposed data model. The latter can be inserted as an IndoorGML extension, and is thus expected to facilitate relevant data generation for the design of various services for people with disabilities.


Ophthalmology ◽  
2018 ◽  
pp. 317-334
Author(s):  
Hao Dong ◽  
Jieqi Kang ◽  
James Schafer ◽  
Aura Ganz

In this paper the authors introduce PERCEPT-V indoor navigation for the blind system. PERCEPT-V enhances PERCEPT system by enabling visually impaired users to navigate in open indoor spaces that differ in size and lighting conditions. The authors deploy visual tags in the environment at specific landmarks and introduce a visual tag detection algorithm using a sampling probe and cascading approach. The authors provide guidelines for the visual tag size, which is a function of various environmental, and usage scenarios, which differ in lighting, dimensions of the indoor environment and angle of usage. The authors also developed a Smartphone based user interface for the visually impaired users that uses Android accessibility features.


Author(s):  
Abdoulaye A. Diakité ◽  
Sisi Zlatanova

During the last two decades, the third dimension took an important place in the heart of every multimedia. While the 3D technologies mainly used to be tools and subject for researchers, they are becoming commercially available to large public. To make it even more accessible, the Project Tango, leaded by Google, integrates in a simple Android tablet sensors that are able to perform acquisition of the 3D information of a real life scene. This makes it possible for a large number of applications to have access to it, ranging from gaming to indoor navigation, including virtual and augmented reality. In this paper we investigate the ability of the Tango tablet to perform the acquisition of indoor building environment to support application such as indoor navigation. We proceed to several scans in different buildings and we study the characteristics of the output models.


Author(s):  
Abdoulaye A. Diakité ◽  
Sisi Zlatanova

During the last two decades, the third dimension took an important place in the heart of every multimedia. While the 3D technologies mainly used to be tools and subject for researchers, they are becoming commercially available to large public. To make it even more accessible, the Project Tango, leaded by Google, integrates in a simple Android tablet sensors that are able to perform acquisition of the 3D information of a real life scene. This makes it possible for a large number of applications to have access to it, ranging from gaming to indoor navigation, including virtual and augmented reality. In this paper we investigate the ability of the Tango tablet to perform the acquisition of indoor building environment to support application such as indoor navigation. We proceed to several scans in different buildings and we study the characteristics of the output models.


2018 ◽  
Vol 7 (8) ◽  
pp. 321 ◽  
Author(s):  
Yueyong Pang ◽  
Chi Zhang ◽  
Liangchen Zhou ◽  
Bingxian Lin ◽  
Guonian Lv

Indoor space information extraction is an important aspect of reconstruction for building information modeling and a necessary process for geographic information system from outdoor to indoor. Entity model extracting methods provide advantages in terms of accuracy for building indoor spaces, as compared with network and grid model methods, and the extraction results can be converted into a network or grid model. However, existing entity model extracting methods based on a search loop do not consider the complex indoor environment of a building, such as isolated columns and walls or cross-floor spaces. In this study, such complex indoor environments are analyzed in detail, and a new approach for extracting buildings’ indoor space information is proposed. This approach is based on indoor space boundary calculation, the Boolean difference for single-floor space extraction, relationship reconstruction, and cross-floor space extraction. The experimental results showed that the proposed method can accurately extract indoor space information from the complex indoor environment of a building with geometric, semantic, and relationship information. This study is theoretically important for better understanding the complexity of indoor space extraction and practically important for improving the modeling accuracy of buildings.


Sign in / Sign up

Export Citation Format

Share Document