scholarly journals DUST STORM DETECTION USING MODIS DATA OVER THE MIDDLE EAST

Author(s):  
A. Zandkarimi ◽  
P. Fatehi

Abstract. Dust storms are one of the common phenomena in the arid and semi-arid regions which cause many economic and environmental losses also affect human health. Therefore, it is necessary to be able to detect dust storms. Several methods exist for dust monitoring, such as Ground-based measurements, satellite remote sensing, video surveillance, wireless sensors. Remote sensing technology provides wide coverage, high spectral and temporal resolutions, even near real-time data, which can offer a valuable data source for dust storm monitoring. We used an algorithm based on Moderate Resolution Imaging Spectroradiometer (MODIS) images for detecting dust storm over the Middle East. The proposed algorithm uses the brightness temperature using multi-bands. The performance of the algorithm was evaluated using the ground-based observations of synoptic stations. The results showed that by applying the algorithm, the dust area can be clearly separated, especially in the regions that cloud is mixed with dust and achieved overall accuracy was ~78%.

Sensors ◽  
2019 ◽  
Vol 19 (17) ◽  
pp. 3687
Author(s):  
Albarakat ◽  
Lakshmi

Dust storms can suspend large quantities of sand and cause haze in the boundary layer over local and regional scales. Iraq is one of the countries that is often impacted to a large degree by the occurrences of dust storms. The time between June 29 to July 8, 2009 is considered one of the worst dust storm periods of all times and many Iraqis suffered medical problems as a result. We used data from the Moderate Resolution Imaging Spectroradiometer (MODIS). MODIS Surface Reflectance Daily L2G Global 1km and 500m data were utilized to calculate the Normalized Difference Dust Index (NDDI). The MYD09GA V006 product was used to monitor, map, and assess the development and spread of dust storms over the arid and semi-arid territories of Iraq. We set thresholds for NDDI to distinguish between water and/or ice cloud and ground features and dust storms. In addition; brightness temperature data (TB) from the Aqua /MODIS thermal band 31 were analyzed to distinguish sand on the land surface from atmospheric dust. We used the MODIS level 2 MYD04 deep blue 550nm Aerosol Option Depth (AOD) data that maintains accuracy even over bright desert surfaces. We found NDDI values lower than 0.05 represent clouds and water bodies, while NDDI greater than 0.18 correspond to dust storm regions. The threshold of TB of 310.5 K was used to distinguish aerosols from the sand on the ground. Approximately 75% of the territory was covered by a dust storm in July 5th 2009 due to strong and dry northwesterly winds.


Atmosphere ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 529
Author(s):  
Ashok Kumar Pokharel ◽  
Tianli Xu ◽  
Xiaobo Liu ◽  
Binod Dawadi

It has been revealed from the Modern-Era Retrospective analysis for Research and Applications MERRA analyses, Moderate Resolution Imaging Spectroradiometer MODIS/Terra satellite imageries, Naval Aerosol Analysis and Prediction System NAAPS model outputs, Cloud –Aerosol Lidar and Infrared Pathfinder Satellite Observations CALIPSO imageries, Hybrid Single Particle Lagrangian Integrated Trajectory HYSPLIT model trajectories, atmospheric soundings, and observational records of dust emission that there were multiple dust storms in the far western parts of India from 12 to 15 June 2018 due to thunderstorms. This led to the lifting of the dust from the surface. The entry of dust into the upper air was caused by the generation of a significant amount of turbulent kinetic energy as a function of strong wind shear generated by the negative buoyancy of the cooled air aloft and the convective buoyancy in the lower planetary boundary layer. Elevated dust reached a significant vertical height and was advected towards the northern/northwestern/northeastern parts of India. In the meantime, this dust was carried by northwesterly winds associated with the jets in the upper level, which advected dust towards the skies over Nepal where rainfall was occurring at that time. Consequently, this led to the muddy rain in Nepal.


2016 ◽  
Vol 14 (3) ◽  
pp. e0907 ◽  
Author(s):  
Mostafa K. Mosleh ◽  
Quazi K. Hassan ◽  
Ehsan H. Chowdhury

This study aimed to develop a remote sensing-based method for forecasting rice yield by considering vegetation greenness conditions during initial and peak greenness stages of the crop; and implemented for “boro” rice in Bangladeshi context. In this research, we used Moderate Resolution Imaging Spectroradiometer (MODIS)-derived two 16-day composite of normalized difference vegetation index (NDVI) images at 250 m spatial resolution acquired during the initial (January 1 to January 16) and peak greenness (March 23/24 to April 6/7 depending on leap year) stages in conjunction with secondary datasets (i.e., boro suitability map, and ground-based information) during 2007-2012 period. The method consisted of two components: (i) developing a model for delineating area under rice cultivation before harvesting; and (ii) forecasting rice yield as a function of NDVI. Our results demonstrated strong agreements between the model (i.e., MODIS-based) and ground-based area estimates during 2010-2012 period, i.e., coefficient of determination (R2); root mean square error (RMSE); and relative error (RE) in between 0.93 to 0.95; 30,519 to 37,451 ha; and ±10% respectively at the 23 district-levels. We also found good agreements between forecasted (i.e., MODIS-based) and ground-based yields during 2010-2012 period (R2 between 0.76 and 0.86; RMSE between 0.21 and 0.29 Mton/ha, and RE between -5.45% and 6.65%) at the 23 district-levels. We believe that our developments of forecasting the boro rice yield would be useful for the decision makers in addressing food security in Bangladesh.


Author(s):  
K. H. Lee ◽  
K. T. Lee

The paper presents currently developing method of volcanic ash detection and retrieval for the Geostationary Korea Multi-Purpose Satellite (GK-2A). With the launch of GK-2A, aerosol remote sensing including dust, smoke, will begin a new era of geostationary remote sensing. The Advanced Meteorological Imager (AMI) onboard GK-2A will offer capabilities for volcanic ash remote sensing similar to those currently provided by the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite. Based on the physical principles for the current polar and geostationary imagers are modified in the algorithm. Volcanic ash is estimated in detection processing from visible and infrared channel radiances, and the comparison of satellite-observed radiances with those calculated from radiative transfer model. The retrievals are performed operationally every 15 min for volcanic ash for pixel sizes of 2 km. The algorithm currently under development uses a multichannel approach to estimate the effective radius, aerosol optical depth (AOD) simultaneously, both over water and land. The algorithm has been tested with proxy data generated from existing satellite observations and forward radiative transfer simulations. Operational assessment of the algorithm will be made after the launch of GK-2A scheduled in 2018.


2017 ◽  
Author(s):  
Seminar Nasional Multidisiplin Ilmu 2017 ◽  
Ramos Lumban Tobing

Metode penginderaan jarak jauh (Remote Sensing) telah banyak digunakan dalam berbagai bidang termasuk diantaranya bidang tutupan lahan/vegetasi termasuk perkebunan. Produk dari penginderaan jauh tersebut banyak tersedia diantaranya NDVI (Normalized Difference Vegetation Index) dan EVI (Enhanced Vegetation Indeks) yang merupakan indikator proxy dari suatu lokasi atau kondisi tutupan lahan lokasi tersebut. Dari beberapa penilitian, NDVI telah banyak digunakan namun EVI masih belum banyak digunakan. Kami membandingkan pengaruh dari penggunaan NDVI dan EVI pada jumlah dan waktu perubahan yang terekam dengan menggunakan metode BFAST (Breaks For Additive Seasonal and Trend). Data yang digunakan adalah MODIS (Moderate Resolution Imaging Spectroradiometer)16 harian NDVI dan EVI berupa gambar komposit (06 April 2000 s.d. 16 November 2014) dari empat piksel (pixel 293,294,295 dan 296) disekitar menara fluks Aek Loba.Hasil penelitian menunjukkan bahwa EVI untuk pemantauan tutupan lahan di kawasan perkebunan tropis yang ditutupi oleh awan intens lebih baik dari NDVI itu. Meskipun demikian, penelitian lebih lanjut dengan meningkatkan resolusi spasial dari citra satelit untuk aplikasi NDVI sangat dianjurkan


Sign in / Sign up

Export Citation Format

Share Document