scholarly journals Dynamics of Muddy Rain of 15 June 2018 in Nepal

Atmosphere ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 529
Author(s):  
Ashok Kumar Pokharel ◽  
Tianli Xu ◽  
Xiaobo Liu ◽  
Binod Dawadi

It has been revealed from the Modern-Era Retrospective analysis for Research and Applications MERRA analyses, Moderate Resolution Imaging Spectroradiometer MODIS/Terra satellite imageries, Naval Aerosol Analysis and Prediction System NAAPS model outputs, Cloud –Aerosol Lidar and Infrared Pathfinder Satellite Observations CALIPSO imageries, Hybrid Single Particle Lagrangian Integrated Trajectory HYSPLIT model trajectories, atmospheric soundings, and observational records of dust emission that there were multiple dust storms in the far western parts of India from 12 to 15 June 2018 due to thunderstorms. This led to the lifting of the dust from the surface. The entry of dust into the upper air was caused by the generation of a significant amount of turbulent kinetic energy as a function of strong wind shear generated by the negative buoyancy of the cooled air aloft and the convective buoyancy in the lower planetary boundary layer. Elevated dust reached a significant vertical height and was advected towards the northern/northwestern/northeastern parts of India. In the meantime, this dust was carried by northwesterly winds associated with the jets in the upper level, which advected dust towards the skies over Nepal where rainfall was occurring at that time. Consequently, this led to the muddy rain in Nepal.

2014 ◽  
Vol 14 (9) ◽  
pp. 13109-13131 ◽  
Author(s):  
B. Qu ◽  
J. Ming ◽  
S.-C. Kang ◽  
G.-S. Zhang ◽  
Y.-W. Li ◽  
...  

Abstract. The large change in albedo has a great effect on glacier ablation. Atmospheric aerosols (e.g. black carbon (BC) and dust) can reduce the albedo of glaciers and thus contribute to their melting. In this study, we investigated the measured albedo as well as the relationship between albedo and mass balance in Zhadang glacier on Mt. Nyanqentanglha associated with MODIS (10A1) data. The impacts of BC and dust in albedo reduction in different melting conditions were identified with SNow ICe Aerosol Radiative (SNICAR) model and in-situ data. It was founded that the mass balance of the glacier has a significant correlation with its surface albedo derived from Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Terra satellite. The average albedo of Zhadang glacier from MODIS increased with the altitude and fluctuated but overall had a decreasing trend during 2001–2010, with the highest (0.722) in 2003 and the lowest (0.597) in 2009 and 2010, respectively. The sensitivity analysis via SNICAR showed that BC was a major factor in albedo reduction when the glacier was covered by newly fallen snow. Nevertheless, the contribution of dust to albedo reduction can be as high as 58% when the glacier experienced strong surficial melting that the surface was almost bare ice. And the average radiative forcing (RF) caused by dust could increase from 1.1 to 8.6 W m−2 exceeding the forcings caused by BC after snow was deposited and surface melting occurred in Zhadang glacier. This suggest that it may be dust rather than BC, dominating the melting of some glaciers in the TP during melting seasons.


2011 ◽  
Vol 4 (6) ◽  
pp. 6643-6678 ◽  
Author(s):  
Y. Xue ◽  
H. Xu ◽  
Y. Li ◽  
L. Yang ◽  
L. Mei ◽  
...  

Abstract. Nine years of daily aerosol optical depth (AOD) measurements have been derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) data using the Synergetic Retrieval of Aerosol Properties (SRAP) method over China for the period from August 2002 to August 2011, comprising AODs at 470, 550, and 660 nm. Then, the variation over China over the nine years was determined from the derived AOD data. Preliminary daily results show the agreement between the Aerosol Robotic Network (AERONET) AOD data and the derived AOD data. From 1219 daily collocations, representing mutually cloud-free conditions, we find that more than 54% of SRAP-MODIS retrieved AOD values comparing with AERONET-observed values within an expected error envelop of 20%. From 222 monthly averaged collocations, representing mutually cloud-free conditions, we find that more than 63% of SRAP-MODIS retrieved AOD values comparing with AERONET-observed values within an expected error envelop of 15% and more than 70% within an expected error envelop of 20%. In addition, the long-term SRAP AOD dataset has been implemented in analysing case studies involving dust storms, haze and the characteristics of AOD variation over China over the past nine years. It was found that areas in China with high AOD values generally appear in the Inner Mongolia, the North China Plain, Tarim Basin, the Sichuan Basin, the Tibetan Plateau and the middle and lower reaches of the Yangtze River and area with low AOD values generally appear in the Fujian Province, the Yungui Plateau, and northeast plain. The seasonal averaged AOD results indicate that AOD values generally reach their maximum in spring and their minimum in winter. The yearly mean and monthly mean SRAP AOD were also used to study the spatial and temporal aerosol distributions over China. The results indicate that the AOD over China exhibited no obvious change. Monthly averaged AOD in August in Beijing experienced one decreasing processes from 2006 to 2010, especially after 2007. The monthly mean AOD decreased from 0.46 in 2007 to 0.29 in 2010. SRAP AODs were used to study one haze case and dust case. Combining AOD data from the SRAP AOD dataset and HYSPLIT model can forecast the transport of haze. SRAP AOD data are also sensitive enough to reflect the occurrence and intensity of dust weather. Thus, the SRAP AOD dataset can be used to precisely reflect the spatial distribution, concentration distribution and transmission path of dust.


Author(s):  
A. Zandkarimi ◽  
P. Fatehi

Abstract. Dust storms are one of the common phenomena in the arid and semi-arid regions which cause many economic and environmental losses also affect human health. Therefore, it is necessary to be able to detect dust storms. Several methods exist for dust monitoring, such as Ground-based measurements, satellite remote sensing, video surveillance, wireless sensors. Remote sensing technology provides wide coverage, high spectral and temporal resolutions, even near real-time data, which can offer a valuable data source for dust storm monitoring. We used an algorithm based on Moderate Resolution Imaging Spectroradiometer (MODIS) images for detecting dust storm over the Middle East. The proposed algorithm uses the brightness temperature using multi-bands. The performance of the algorithm was evaluated using the ground-based observations of synoptic stations. The results showed that by applying the algorithm, the dust area can be clearly separated, especially in the regions that cloud is mixed with dust and achieved overall accuracy was ~78%.


2015 ◽  
Vol 8 (3) ◽  
pp. 2521-2554 ◽  
Author(s):  
J. A. Limbacher ◽  
R. A. Kahn

Abstract. We diagnose the potential causes for the Multi-angle Imaging SpectroRadiometer's (MISR) persistent high aerosol optical depth (AOD) bias at low AOD with the aid of coincident MODerate-resolution Imaging Spectroradiometer (MODIS) imagery from NASA's Terra satellite. Internal reflections within the MISR instrument are responsible for a large portion of the high AOD bias in high-contrast scenes, which are especially common as broken-cloud situations over ocean. Discrepancies between MODIS and MISR nadir-viewing near-infrared (NIR) images are used to optimize nine parameters, along with a background reflectance modulation term (that was modeled separately), to represent the observed features. Independent, surface-based AOD measurements from the AErosol RObotic NETwork (AERONET) and the Marine Aerosol Network (MAN) are compared with MISR Research Algorithm (RA) AOD retrievals for 1118 coincidences to validate the corrections when applied to the nadir and off-nadir cameras. Additionally, the calibration coefficients for the red and NIR channels used for MISR over-water aerosol retrievals were reassessed with the RA to be consistent on a camera-by-camera basis. With these corrections, plus the baseline RA corrections applied (except enhanced cloud screening), the median AOD bias in the mid-visible (green) band decreases from 0.010 to 0.002, the RMSE decreases by ~ 10%, and the slope and correlation of the MISR vs. sun photometer Ångström Exponent improves. For AOD558 nm < 0.10 and with additional cloud screening, the median bias for the RA-retrieved AOD in the green band decreases from 0.011 to 0.003, compared to ~ 0.023 for the Standard Algorithm (SA). RMSE decreases by ~ 20% compared to the baseline (uncorrected) RA and by 17–53% compared to the SA. After all corrections and cloud screening are implemented, for AOD558 nm < 0.10, which includes about half the validation data, 68% absolute AOD errors for the RA have dropped to < 0.02 (~ 0.018).


2019 ◽  
Vol 11 (11) ◽  
pp. 1315
Author(s):  
Ning Lu

Monthly atmospheric precipitable water (PW) from the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Terra satellite was assessed over land at 60°S–60°N. MODIS provides two PW products by using infrared (IR) and near-IR (NIR) algorithms, respectively. An assessment was performed for both MODIS PW data from 2000 to 2014, comparing them with the measurements at international stations of the global positioning systems and with a reanalysis to detect abrupt changes through monthly variations. It is noted that MODIS IR systematically underestimated PW in over 75% of stations, and that PW estimation declines with time. MODIS NIR significantly overestimated PW for tropical land and experienced two abrupt shifts. These data defects result in large spurious decreasing trends in MODIS IR and increasing trends in MODIS NIR. The two MODIS PW products are currently not suitable for a climatic-trend analysis, highlighting the need for data reprocessing and calibration.


Sensors ◽  
2019 ◽  
Vol 19 (17) ◽  
pp. 3687
Author(s):  
Albarakat ◽  
Lakshmi

Dust storms can suspend large quantities of sand and cause haze in the boundary layer over local and regional scales. Iraq is one of the countries that is often impacted to a large degree by the occurrences of dust storms. The time between June 29 to July 8, 2009 is considered one of the worst dust storm periods of all times and many Iraqis suffered medical problems as a result. We used data from the Moderate Resolution Imaging Spectroradiometer (MODIS). MODIS Surface Reflectance Daily L2G Global 1km and 500m data were utilized to calculate the Normalized Difference Dust Index (NDDI). The MYD09GA V006 product was used to monitor, map, and assess the development and spread of dust storms over the arid and semi-arid territories of Iraq. We set thresholds for NDDI to distinguish between water and/or ice cloud and ground features and dust storms. In addition; brightness temperature data (TB) from the Aqua /MODIS thermal band 31 were analyzed to distinguish sand on the land surface from atmospheric dust. We used the MODIS level 2 MYD04 deep blue 550nm Aerosol Option Depth (AOD) data that maintains accuracy even over bright desert surfaces. We found NDDI values lower than 0.05 represent clouds and water bodies, while NDDI greater than 0.18 correspond to dust storm regions. The threshold of TB of 310.5 K was used to distinguish aerosols from the sand on the ground. Approximately 75% of the territory was covered by a dust storm in July 5th 2009 due to strong and dry northwesterly winds.


2020 ◽  
Vol 12 (2) ◽  
pp. 202 ◽  
Author(s):  
Andrea Melchiorre ◽  
Luigi Boschetti ◽  
David P. Roy

Clouds limit the quality and availability of optical wavelength surface observations from Earth Observation (EO) satellites. This limitation is particularly relevant for the generation of systematic thematic products from EO medium spatial resolution polar orbiting sensors, such as Landsat, which have reduced temporal resolution compared to coarser resolution polar orbiting sensors such as the Moderate Resolution Imaging Spectroradiometer (MODIS). MODIS on the Terra satellite is in the same orbit as Landsat 7 with an approximately 30 minute overpass difference. In this study, one year of global Landsat 7 Enhanced Thematic Mapper Plus (ETM+) image cloud fractions over land are compared with collocated MODIS cloud fractions, generated by combining the MODIS-Terra global daily cloud mask product (MOD35) with the Landsat 7 ETM+ image footprints and acquisition calendar. The results show high correlation between the MODIS and Landsat 7 ETM+ cloud fractions (R2 = 0.83), negligible bias (median difference: <0.01) and low dispersion around the median (interquartile range: [−0.02, 0.06]). These results indicate that, globally, the cloud cover detected by MODIS-Terra data can be used as a proxy for Landsat 7 ETM+ cloud cover.


2015 ◽  
Vol 8 (7) ◽  
pp. 2927-2943 ◽  
Author(s):  
J. A. Limbacher ◽  
R. A. Kahn

Abstract. We diagnose the potential causes for the Multi-angle Imaging SpectroRadiometer's (MISR) persistent high aerosol optical depth (AOD) bias at low AOD with the aid of coincident MODerate-resolution Imaging Spectroradiometer (MODIS) imagery from NASA's Terra satellite. Stray light in the MISR instrument is responsible for a large portion of the high AOD bias in high-contrast scenes, such as broken-cloud scenes that are quite common over ocean. Discrepancies among MODIS and MISR nadir-viewing blue, green, red, and near-infrared images are used to optimize seven parameters individually for each wavelength, along with a background reflectance modulation term that is modeled separately, to represent the observed features. Independent surface-based AOD measurements from the AErosol RObotic NETwork (AERONET) and the Marine Aerosol Network (MAN) are compared with MISR research aerosol retrieval algorithm (RA) AOD retrievals for 1118 coincidences to validate the corrections when applied to the nadir and off-nadir cameras. With these corrections, plus the baseline RA corrections and enhanced cloud screening applied, the median AOD bias for all data in the mid-visible (green, 558 nm) band decreases from 0.006 (0.020 for the MISR standard algorithm (SA)) to 0.000, and the RMSE decreases by 5 % (27 % compared to the SA). For AOD558 nm < 0.10, which includes about half the validation data, 68th percentile absolute AOD558 nm errors for the RA have dropped from 0.022 (0.034 for the SA) to < 0.02 (~ 0.018).


Author(s):  
Zhenzhen Wang ◽  
Jianjun Zhao ◽  
Jiawen Xu ◽  
Mingrui Jia ◽  
Han Li ◽  
...  

Northeast China is China’s primary grain production base. A large amount of crop straw is incinerated every spring and autumn, which greatly impacts air quality. To study the degree of influence of straw burning on urban pollutant concentrations, this study used The Moderate-Resolution Imaging Spectroradiometer/Terra Thermal Anomalies & Fire Daily L3 Global 1 km V006 (MOD14A1) and The Moderate-Resolution Imaging Spectroradiometer/Aqua Thermal Anomalies and Fire Daily L3 Global 1 km V006 (MYD14A1) data from 2015 to 2017 to extract fire spot data on arable land burning and to study the spatial distribution characteristics of straw burning on urban pollutant concentrations, temporal variation characteristics and impact thresholds. The results show that straw burning in Northeast China is concentrated in spring and autumn; the seasonal spatial distributions of PM2.5, PM10 andAir Quality Index (AQI) in 41 cities or regions in Northeast China correspond to the seasonal variation of fire spots; and pollutants appear in the peak periods of fire spots. In areas where the concentration coefficient of rice or corn is greater than 1, the number of fire spots has a strong correlation with the urban pollution index. The correlation coefficient R between the number of burned fire spots and the pollutant concentration has a certain relationship with the urban distribution. Cities are aggregated in geospatial space with different R values.


2021 ◽  
Vol 13 (15) ◽  
pp. 2895
Author(s):  
Maria Gavrouzou ◽  
Nikolaos Hatzianastassiou ◽  
Antonis Gkikas ◽  
Christos J. Lolis ◽  
Nikolaos Mihalopoulos

A satellite algorithm able to identify Dust Aerosols (DA) is applied for a climatological investigation of Dust Aerosol Episodes (DAEs) over the greater Mediterranean Basin (MB), one of the most climatologically sensitive regions of the globe. The algorithm first distinguishes DA among other aerosol types (such as Sea Salt and Biomass Burning) by applying threshold values on key aerosol optical properties describing their loading, size and absorptivity, namely Aerosol Optical Depth (AOD), Aerosol Index (AI) and Ångström Exponent (α). The algorithm operates on a daily and 1° × 1° geographical cell basis over the 15-year period 2005–2019. Daily gridded spectral AOD data are taken from Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua Collection 6.1, and are used to calculate the α data, which are then introduced into the algorithm, while AI data are obtained by the Ozone Monitoring Instrument (OMI) -Aura- Near-UV aerosol product OMAERUV dataset. The algorithm determines the occurrence of Dust Aerosol Episode Days (DAEDs), whenever high loads of DA (higher than their climatological mean value plus two/four standard deviations for strong/extreme DAEDs) exist over extended areas (more than 30 pixels or 300,000 km2). The identified DAEDs are finally grouped into Dust Aerosol Episode Cases (DAECs), consisting of at least one DAED. According to the algorithm results, 166 (116 strong and 50 extreme) DAEDs occurred over the MB during the study period. DAEDs are observed mostly in spring (47%) and summer (38%), with strong DAEDs occurring primarily in spring and summer and extreme ones in spring. Decreasing, but not statistically significant, trends of the frequency, spatial extent and intensity of DAECs are revealed. Moreover, a total number of 98 DAECs was found, primarily in spring (46 DAECs) and secondarily in summer (36 DAECs). The seasonal distribution of the frequency of DAECs varies geographically, being highest in early spring over the eastern Mediterranean, in late spring over the central Mediterranean and in summer over the western MB.


Sign in / Sign up

Export Citation Format

Share Document