scholarly journals SIMULTANEOUS REGISTRATION AND INTEGRATION OF TWO SEQUENTIAL VELODYNE POINT CLOUDS USING VOXEL-BASED LEAST SQUARE ADJUSTMENT

Author(s):  
L. Moradi ◽  
M. Saadatseresht

Abstract. In this paper, a model for simultaneous registration and 3D modelling of Velodyne VLP 32e laser scanner point clouds based on least square adjustment methods was developed. Considering that the most of proposed methods for registration of point clouds which obtained by mobile mapping systems have applications in navigation and visualization. They usually do not pay enough attention to geometric accuracy, error propagation, and weights analysis. In addition, in these methods, some point correspondence solutions are used which increase the computation time and decrease the accuracy. Therefore, the purpose of this paper is to develop a model based on the least square adjustment and focus on the weight of the plane parameters which created by a robust least square fitting algorithm. It also simultaneously creates a 3D environmental model and registers point clouds. To do this, it utilizes both point cloud voxelization and differential planes techniques. The result illustrates the high capability of the proposed solution with the optimum weight of plane parameters to 100, and average distance between two scans can reach to below 10 mm.In addition, the best voxel size was 10 cm which is twice of point cloud resolutions.

Author(s):  
K. Kohira ◽  
H. Masuda

A mobile mapping system is effective for capturing dense point-clouds of roads and roadside objects.Point-clouds of urban areas, residential areas, and arterial roads are useful for maintenance of infrastructure, map creation, and automatic driving. However, the data size of point-clouds measured in large areas is enormously large. A large storage capacity is required to store such point-clouds, and heavy loads will be taken on network if point-clouds are transferred through the network. Therefore, it is desirable to reduce data sizes of point-clouds without deterioration of quality. In this research, we propose a novel point-cloud compression method for vehicle-based mobile mapping systems. In our compression method, point-clouds are mapped onto 2D pixels using GPS time and the parameters of the laser scanner. Then, the images are encoded in the Portable Networking Graphics (PNG) format and compressed using the PNG algorithm. In our experiments, our method could efficiently compress point-clouds without deteriorating the quality.


2021 ◽  
Vol 13 (13) ◽  
pp. 2494
Author(s):  
Gaël Kermarrec ◽  
Niklas Schild ◽  
Jan Hartmann

T-splines have recently been introduced to represent objects of arbitrary shapes using a smaller number of control points than the conventional non-uniform rational B-splines (NURBS) or B-spline representatizons in computer-aided design, computer graphics and reverse engineering. They are flexible in representing complex surface shapes and economic in terms of parameters as they enable local refinement. This property is a great advantage when dense, scattered and noisy point clouds are approximated using least squares fitting, such as those from a terrestrial laser scanner (TLS). Unfortunately, when it comes to assessing the goodness of fit of the surface approximation with a real dataset, only a noisy point cloud can be approximated: (i) a low root mean squared error (RMSE) can be linked with an overfitting, i.e., a fitting of the noise, and should be correspondingly avoided, and (ii) a high RMSE is synonymous with a lack of details. To address the challenge of judging the approximation, the reference surface should be entirely known: this can be solved by printing a mathematically defined T-splines reference surface in three dimensions (3D) and modeling the artefacts induced by the 3D printing. Once scanned under different configurations, it is possible to assess the goodness of fit of the approximation for a noisy and potentially gappy point cloud and compare it with the traditional but less flexible NURBS. The advantages of T-splines local refinement open the door for further applications within a geodetic context such as rigorous statistical testing of deformation. Two different scans from a slightly deformed object were approximated; we found that more than 40% of the computational time could be saved without affecting the goodness of fit of the surface approximation by using the same mesh for the two epochs.


Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 201
Author(s):  
Michael Bekele Maru ◽  
Donghwan Lee ◽  
Kassahun Demissie Tola ◽  
Seunghee Park

Modeling a structure in the virtual world using three-dimensional (3D) information enhances our understanding, while also aiding in the visualization, of how a structure reacts to any disturbance. Generally, 3D point clouds are used for determining structural behavioral changes. Light detection and ranging (LiDAR) is one of the crucial ways by which a 3D point cloud dataset can be generated. Additionally, 3D cameras are commonly used to develop a point cloud containing many points on the external surface of an object around it. The main objective of this study was to compare the performance of optical sensors, namely a depth camera (DC) and terrestrial laser scanner (TLS) in estimating structural deflection. We also utilized bilateral filtering techniques, which are commonly used in image processing, on the point cloud data for enhancing their accuracy and increasing the application prospects of these sensors in structure health monitoring. The results from these sensors were validated by comparing them with the outputs from a linear variable differential transformer sensor, which was mounted on the beam during an indoor experiment. The results showed that the datasets obtained from both the sensors were acceptable for nominal deflections of 3 mm and above because the error range was less than ±10%. However, the result obtained from the TLS were better than those obtained from the DC.


Author(s):  
M. Franzini ◽  
V. Casella ◽  
P. Marchese ◽  
M. Marini ◽  
G. Della Porta ◽  
...  

Abstract. Recent years showed a gradual transition from terrestrial to aerial survey thanks to the development of UAV and sensors for it. Many sectors benefited by this change among which geological one; drones are flexible, cost-efficient and can support outcrops surveying in many difficult situations such as inaccessible steep and high rock faces. The experiences acquired in terrestrial survey, with total stations, GNSS or terrestrial laser scanner (TLS), are not yet completely transferred to UAV acquisition. Hence, quality comparisons are still needed. The present paper is framed in this perspective aiming to evaluate the quality of the point clouds generated by an UAV in a geological context; data analysis was conducted comparing the UAV product with the homologous acquired with a TLS system. Exploiting modern semantic classification, based on eigenfeatures and support vector machine (SVM), the two point clouds were compared in terms of density and mutual distance. The UAV survey proves its usefulness in this situation with a uniform density distribution in the whole area and producing a point cloud with a quality comparable with the more traditional TLS systems.


2019 ◽  
Vol 11 (16) ◽  
pp. 1955 ◽  
Author(s):  
Markus Hillemann ◽  
Martin Weinmann ◽  
Markus S. Mueller ◽  
Boris Jutzi

Mobile Mapping is an efficient technology to acquire spatial data of the environment. The spatial data is fundamental for applications in crisis management, civil engineering or autonomous driving. The extrinsic calibration of the Mobile Mapping System is a decisive factor that affects the quality of the spatial data. Many existing extrinsic calibration approaches require the use of artificial targets in a time-consuming calibration procedure. Moreover, they are usually designed for a specific combination of sensors and are, thus, not universally applicable. We introduce a novel extrinsic self-calibration algorithm, which is fully automatic and completely data-driven. The fundamental assumption of the self-calibration is that the calibration parameters are estimated the best when the derived point cloud represents the real physical circumstances the best. The cost function we use to evaluate this is based on geometric features which rely on the 3D structure tensor derived from the local neighborhood of each point. We compare different cost functions based on geometric features and a cost function based on the Rényi quadratic entropy to evaluate the suitability for the self-calibration. Furthermore, we perform tests of the self-calibration on synthetic and two different real datasets. The real datasets differ in terms of the environment, the scale and the utilized sensors. We show that the self-calibration is able to extrinsically calibrate Mobile Mapping Systems with different combinations of mapping and pose estimation sensors such as a 2D laser scanner to a Motion Capture System and a 3D laser scanner to a stereo camera and ORB-SLAM2. For the first dataset, the parameters estimated by our self-calibration lead to a more accurate point cloud than two comparative approaches. For the second dataset, which has been acquired via a vehicle-based mobile mapping, our self-calibration achieves comparable results to a manually refined reference calibration, while it is universally applicable and fully automated.


2019 ◽  
Vol 11 (23) ◽  
pp. 2727 ◽  
Author(s):  
Ming Huang ◽  
Pengcheng Wei ◽  
Xianglei Liu

Plane segmentation is a basic yet important process in light detection and ranging (LiDAR) point cloud processing. The traditional point cloud plane segmentation algorithm is typically affected by the number of point clouds and the noise data, which results in slow segmentation efficiency and poor segmentation effect. Hence, an efficient encoding voxel-based segmentation (EVBS) algorithm based on a fast adjacent voxel search is proposed in this study. First, a binary octree algorithm is proposed to construct the voxel as the segmentation object and code the voxel, which can compute voxel features quickly and accurately. Second, a voxel-based region growing algorithm is proposed to cluster the corresponding voxel to perform the initial point cloud segmentation, which can improve the rationality of seed selection. Finally, a refining point method is proposed to solve the problem of under-segmentation in unlabeled voxels by judging the relationship between the points and the segmented plane. Experimental results demonstrate that the proposed algorithm is better than the traditional algorithm in terms of computation time, extraction accuracy, and recall rate.


Author(s):  
Bernardo Lourenço ◽  
Tiago Madeira ◽  
Paulo Dias ◽  
Vitor M. Ferreira Santos ◽  
Miguel Oliveira

Purpose 2D laser rangefinders (LRFs) are commonly used sensors in the field of robotics, as they provide accurate range measurements with high angular resolution. These sensors can be coupled with mechanical units which, by granting an additional degree of freedom to the movement of the LRF, enable the 3D perception of a scene. To be successful, this reconstruction procedure requires to evaluate with high accuracy the extrinsic transformation between the LRF and the motorized system. Design/methodology/approach In this work, a calibration procedure is proposed to evaluate this transformation. The method does not require a predefined marker (commonly used despite its numerous disadvantages), as it uses planar features in the point acquired clouds. Findings Qualitative inspections show that the proposed method reduces artifacts significantly, which typically appear in point clouds because of inaccurate calibrations. Furthermore, quantitative results and comparisons with a high-resolution 3D scanner demonstrate that the calibrated point cloud represents the geometries present in the scene with much higher accuracy than with the un-calibrated point cloud. Practical implications The last key point of this work is the comparison of two laser scanners: the lemonbot (authors’) and a commercial FARO scanner. Despite being almost ten times cheaper, the laser scanner was able to achieve similar results in terms of geometric accuracy. Originality/value This work describes a novel calibration technique that is easy to implement and is able to achieve accurate results. One of its key features is the use of planes to calibrate the extrinsic transformation.


2020 ◽  
Author(s):  
Moritz Bruggisser ◽  
Johannes Otepka ◽  
Norbert Pfeifer ◽  
Markus Hollaus

<p>Unmanned aerial vehicles-borne laser scanning (ULS) allows time-efficient acquisition of high-resolution point clouds on regional extents at moderate costs. The quality of ULS-point clouds facilitates the 3D modelling of individual tree stems, what opens new possibilities in the context of forest monitoring and management. In our study, we developed and tested an algorithm which allows for i) the autonomous detection of potential stem locations within the point clouds, ii) the estimation of the diameter at breast height (DBH) and iii) the reconstruction of the tree stem. In our experiments on point clouds from both, a RIEGL miniVUX-1DL and a VUX-1UAV, respectively, we could detect 91.0 % and 77.6 % of the stems within our study area automatically. The DBH could be modelled with biases of 3.1 cm and 1.1 cm, respectively, from the two point cloud sets with respective detection rates of 80.6 % and 61.2 % of the trees present in the field inventory. The lowest 12 m of the tree stem could be reconstructed with absolute stem diameter differences below 5 cm and 2 cm, respectively, compared to stem diameters from a point cloud from terrestrial laser scanning. The accuracy of larger tree stems thereby was higher in general than the accuracy for smaller trees. Furthermore, we recognized a small influence only of the completeness with which a stem is covered with points, as long as half of the stem circumference was captured. Likewise, the absolute point count did not impact the accuracy, but, in contrast, was critical to the completeness with which a scene could be reconstructed. The precision of the laser scanner, on the other hand, was a key factor for the accuracy of the stem diameter estimation. <br>The findings of this study are highly relevant for the flight planning and the sensor selection of future ULS acquisition missions in the context of forest inventories.</p>


2014 ◽  
Vol 513-517 ◽  
pp. 3680-3683 ◽  
Author(s):  
Xiao Xu Leng ◽  
Jun Xiao ◽  
Deng Yu Li

As the first step in 3D point cloud process, registration plays an critical role in determining the quality of subsequent results. In this paper, an initial registration algorithm of point clouds based on random sampling is proposed. In the proposed algorithm, the base points set is first extracted randomly in the target point cloud, next an optimal corresponding points set is got from the source point cloud, then a transform matrix is estimated based on the two sets with least square methods, finally the matrix is applied on the source point cloud. Experimental results show that this algorithm has ideal precision as well as good robustness.


Author(s):  
K. Thoeni ◽  
A. Giacomini ◽  
R. Murtagh ◽  
E. Kniest

This work presents a comparative study between multi-view 3D reconstruction using various digital cameras and a terrestrial laser scanner (TLS). Five different digital cameras were used in order to estimate the limits related to the camera type and to establish the minimum camera requirements to obtain comparable results to the ones of the TLS. The cameras used for this study range from commercial grade to professional grade and included a GoPro Hero 1080 (5 Mp), iPhone 4S (8 Mp), Panasonic Lumix LX5 (9.5 Mp), Panasonic Lumix ZS20 (14.1 Mp) and Canon EOS 7D (18 Mp). The TLS used for this work was a FARO Focus 3D laser scanner with a range accuracy of ±2 mm. The study area is a small rock wall of about 6 m height and 20 m length. The wall is partly smooth with some evident geological features, such as non-persistent joints and sharp edges. Eight control points were placed on the wall and their coordinates were measured by using a total station. These coordinates were then used to georeference all models. A similar number of images was acquired from a distance of between approximately 5 to 10 m, depending on field of view of each camera. The commercial software package PhotoScan was used to process the images, georeference and scale the models, and to generate the dense point clouds. Finally, the open-source package CloudCompare was used to assess the accuracy of the multi-view results. Each point cloud obtained from a specific camera was compared to the point cloud obtained with the TLS. The latter is taken as ground truth. The result is a coloured point cloud for each camera showing the deviation in relation to the TLS data. The main goal of this study is to quantify the quality of the multi-view 3D reconstruction results obtained with various cameras as objectively as possible and to evaluate its applicability to geotechnical problems.


Sign in / Sign up

Export Citation Format

Share Document