scholarly journals A CALIBRATION METHOD OF TWO MOBILE LASER SCANNING SYSTEM UNITS FOR RAILWAY MEASUREMENT

Author(s):  
K. Yamamoto ◽  
T. Chen ◽  
N. Yabuki

Abstract. This paper proposes a methodology to calibrate the laser scanner of a Mobile Laser Scanning System (MLS) with the trajectory of the other MLS, both of which are installed directly above the top of both rails. Railway vehicle laser scanners systems of MLS are able to obtain 3D scanning map of the rail environment. In order to adapt the actual site condition of the maintenance works, we propose a calibration method with non-linear Least Mean Square calculation which use point clouds around poles along rails and sleepers of rails as cylindrical and planner constraints. The accuracy of 0.006 m between two laser point clouds can be achieved with this method. With the common planar and cylinder condition Leven-Marquardt method has been applied for this method. This method can execute without a good initial value for the extrinsic parameter and can shorten the processing time compared with the linear type of Least Mean Square method.

2015 ◽  
Vol 9 (4) ◽  
Author(s):  
Erik Heinz ◽  
Christian Eling ◽  
Markus Wieland ◽  
Lasse Klingbeil ◽  
Heiner Kuhlmann

AbstractIn recent years, kinematic laser scanning has become increasingly popular because it offers many benefits compared to static laser scanning. The advantages include both saving of time in the georeferencing and a more favorable scanning geometry. Often mobile laser scanning systems are installed on wheeled platforms, which may not reach all parts of the object. Hence, there is an interest in the development of portable systems, which remain operational even in inaccessible areas. The development of such a portable laser scanning system is presented in this paper. It consists of a lightweight direct georeferencing unit for the position and attitude determination and a small low-cost 2D laser scanner. This setup provides advantages over existing portable systems that employ heavy and expensive 3D laser scanners in a profiling mode.A special emphasis is placed on the system calibration, i. e. the determination of the transformation between the coordinate frames of the direct georeferencing unit and the 2D laser scanner. To this end, a calibration field is used, which consists of differently orientated georeferenced planar surfaces, leading to estimates for the lever arms and boresight angles with an accuracy of mm and one-tenth of a degree. Finally, point clouds of the mobile laser scanning system are compared with georeferenced point clouds of a high-precision 3D laser scanner. Accordingly, the accuracy of the system is in the order of cm to dm. This is in good agreement with the expected accuracy, which has been derived from the error propagation of previously estimated variance components.


Author(s):  
Juha Hyyppä ◽  
Xiaowei Yu ◽  
Teemu Hakala ◽  
Harri Kaartinen ◽  
Antero Kukko ◽  
...  

Automation of forest field reference data collection has been an intensive research objective for laser scanning scientists ever since the invention of terrestrial laser scanning more than two decades ago. Recently, it has been proposed that such automated data collection providing both the tree heights and stem curves would require a combination of above-canopy UAV point clouds and terrestrial point clouds. In this study, we demonstrate that an under-canopy UAV laser scanning system utilizing a rotating laser scanner can alone provide accurate estimates of the canopy height and the stem volume for the majority of the trees in a boreal forest. To this end, we mounted a rotating laser scanner based on a Velodyne VLP-16 sensor onboard a manually piloted UAV. The UAV was commanded with the help of a live video feed from the onboard camera of the UAV. Since the system was based on a rotating laser scanner providing varying view angles, all important elements such as treetops, branches, trunks, and ground could be recorded with laser hits. In an experiment including two different forest structures, namely sparse and obstructed canopy, we showed that our system can measure the heights of individual trees with a bias of -20 cm and a standard error of 40 cm in the sparse forest and with a bias of -65 cm and a standard error of 1 m in the obstructed forest. The accuracy of the obtained tree height estimates was equivalent to airborne above-canopy UAV surveys conducted in similar forest conditions. The higher underestimation and higher inaccuracy in the obstructed site can be attributed to three trees with a height exceeding 25 m and the applied laser scanning system VLP-16 that had a limited height measurement capacity when it comes to trees taller than 25 m. Additionally, we used our system to estimate the stem volumes of individual trees with a standard error at the level of 10%. This level of error is equivalent to the error obtained when merging above-canopy UAV laser scanner data with terrestrial point cloud data. Future research is needed for testing new sensors, for implementing autonomous operation inside canopies through collision avoidance and navigation through canopies, and for developing robust methods that work also with more complex forest structure. The results show that we do not necessarily need a combination of terrestrial point clouds and point clouds collected using above-canopy UAV systems in order to accurately estimate the heights and the volumes of individual trees.


2016 ◽  
Vol 10 (3) ◽  
Author(s):  
Zhenxiang Jian ◽  
Bahram Ravani

AbstractThe boresight misalignment of a mobile laser scanning system is a major source of error for point cloud data and cannot be measured directly. This paper presents a new boresight calibration method for a mobile laser scanner system that uses an external fixture with a simple checkerboard pattern. The boresight angles are determined by minimizing the differences between the measured relative distances of the intersection points of the squares in a checkerboard fixture with the corresponding actual distances in the fixture. Experimental results from scanning the checkerboard pattern on the fixture show that the calibrated values of the boresight angles match the manufacturer’s values within 0.22 cm. Using this simple checkerboard fixture in the field prevents surveyors from having to rely on roadway features or setting control targets and provides for an alternative approach for the boresight calibration of a mobile laser scanner system.


Author(s):  
W. Wu ◽  
C. Chen ◽  
Y. Cong ◽  
Z. Dong ◽  
J. Li ◽  
...  

<p><strong>Abstract.</strong> Aiming to accomplish automatic and real-time three-dimensional mapping in both indoor and outdoor scenes, a low-cost wheeled robot-borne laser scanning system is proposed in this paper. The system includes a laser scanner, an inertial measurement unit, a modified turtlebot3 two-wheel differential chassis and etc. To achieve a globally consistent map, the system performs global trajectory optimization after detecting the loop closure. Experiments are undertaken in two typical indoor/outdoor scenes that is an underground car park and a road environment in the campus of Wuhan University. The point clouds acquired by the proposed system are quantitatively evaluated by comparing the derived point clouds with the ground truth data collected by a RIEGL VZ 400 laser scanner. The results present an accuracy of 90% points below 0.1 meter error in the tested scene, showing that its applicability and potential in indoor and mapping applications.</p>


2013 ◽  
Vol 405-408 ◽  
pp. 3032-3036
Author(s):  
Yi Bo Sun ◽  
Xin Qi Zheng ◽  
Zong Ren Jia ◽  
Gang Ai

At present, most of the commercial 3D laser scanning measurement systems do work for a large area and a big scene, but few shows their advantage in the small area or small scene. In order to solve this shortage, we design a light-small mobile 3D laser scanning system, which integrates GPS, INS, laser scanner and digital camera and other sensors, to generate the Point Cloud data of the target through data filtering and fusion. This system can be mounted on airborne or terrestrial small mobile platform and enables to achieve the goal of getting Point Cloud data rapidly and reconstructing the real 3D model. Compared to the existing mobile 3D laser scanning system, the system we designed has high precision but lower cost, smaller hardware and more flexible.


2011 ◽  
Vol 201-203 ◽  
pp. 940-943
Author(s):  
Heng Feng Yan ◽  
Jun Shao ◽  
Ji Min Chen

This paper introduces a solution for laser scanning system, which utilizes machine vision technology. It includes algorithm for positioning and matrix for scanning control. The system can be used to detect an object and laser mark on specific position. This work explains how to use one CCD to catch an object’s position variation relative to a reference point, and how to translate the different coordination systems for laser scanner etc.


Optik ◽  
2011 ◽  
Vol 122 (4) ◽  
pp. 324-329 ◽  
Author(s):  
Jianfeng Li ◽  
Ming Chen ◽  
Xuebi Jin ◽  
Yu Chen ◽  
Zhiyong Dai ◽  
...  

2013 ◽  
Vol 671-674 ◽  
pp. 2111-2114
Author(s):  
Yan Ping Feng ◽  
Wei Guo Li ◽  
Li Bing Yang ◽  
Yan Li Gao ◽  
Wen Bin Li

3D laser scanning system is to use laser ranging principle to record intensively the 3D coordinates, reflectivity and texture information on the surface of the target object. It makes a real record of the three-dimensional space, which makes traditional measurement be released from the limit that couldn’t be exceeded in the past, and let the measurement precision up to a new level. At the same time, it has provided extensive researches with better help than ever. This paper mainly discusses the characteristics, working principle, application and future development of the ground 3 dimensional laser scanner.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Ming Guo ◽  
Bingnan Yan ◽  
Tengfei Zhou ◽  
Deng Pan ◽  
Guoli Wang

To obtain high-precision measurement data using vehicle-borne light detection and ranging (LiDAR) scanning (VLS) systems, calibration is necessary before a data acquisition mission. Thus, a novel calibration method based on a homemade target ball is proposed to estimate the system mounting parameters, which refer to the rotational and translational offsets between the LiDAR sensor and inertial measurement unit (IMU) orientation and position. Firstly, the spherical point cloud is fitted into a sphere to extract the coordinates of the centre, and each scan line on the sphere is fitted into a section of the sphere to calculate the distance ratio from the centre to the nearest two sections, and the attitude and trajectory parameters of the centre are calculated by linear interpolation. Then, the real coordinates of the centre of the sphere are calculated by measuring the coordinates of the reflector directly above the target ball with the total station. Finally, three rotation parameters and three translation parameters are calculated by two least-squares adjustments. Comparisons of the point cloud before and after calibration and the calibrated point clouds with the point cloud obtained by the terrestrial laser scanner show that the accuracy significantly improved after calibration. The experiment indicates that the calibration method based on the homemade target ball can effectively improve the accuracy of the point cloud, which can promote VLS development and applications.


Sign in / Sign up

Export Citation Format

Share Document