scholarly journals EVALUATION OF INTERIOR ORIENTATION MODELLING FOR CAMERAS WITH ASPHERIC LENSES AND IMAGE PRE-PROCESSING WITH SPECIAL EMPHASIS TO SFM RECONSTRUCTION

Author(s):  
H. Hastedt ◽  
T. Luhmann ◽  
H.-J. Przybilla ◽  
R. Rofallski

Abstract. For optical 3D measurements in close-range and UAV applications, the modelling of interior orientation is of superior importance in order to subsequently allow for high precision and accuracy in geometric 3D reconstruction. Nowadays, modern camera systems are often used for optical 3D measurements due to UAV payloads and economic purposes. They are constructed of aspheric and spherical lens combinations and include image pre-processing like low-pass filtering or internal distortion corrections that may lead to effects in image space not being considered with the standard interior orientation models. With a variety of structure-from-motion (SfM) data sets, four typical systematic patterns of residuals could be observed. These investigations focus on the evaluation of interior orientation modelling with respect to minimising systematics given in image space after bundle adjustment. The influences are evaluated with respect to interior and exterior orientation parameter changes and their correlations as well as the impact in object space. With the variety of data sets, camera/lens/platform configurations and pre-processing influences, these investigations indicate a number of different behaviours. Some specific advices in the usage of extended interior orientation models, like Fourier series, could be derived for a selection of the data sets. Significant reductions of image space systematics are achieved. Even though increasing standard deviations and correlations for the interior orientation parameters are a consequence, improvements in object space precision and image space reliability could be reached.

Author(s):  
A. M. G. Tommaselli ◽  
A. Berveglieri ◽  
R. A. Oliveira ◽  
L. Y. Nagai ◽  
E. Honkavaara

Flexible tools for photogrammetry and remote sensing using unmanned airborne vehicles (UAVs) have been attractive topics of research and development. The lightweight hyperspectral camera based on a Fabry-Pérot interferometer (FPI) is one of the highly interesting tools for UAV based remote sensing for environmental and agricultural applications. The camera used in this study acquires images from different wavelengths by changing the FPI gap and using two CMOS sensors. Due to the acquisition principle of this camera, the interior orientation parameters (IOP) of the spectral bands can vary for each band and sensor and changing the configuration also would change these sets of parameters posing an operational problem when several bands configurations are being used. The objective of this study is to assess the impact of use IOPs estimated for some bands in one configuration for other bands of different configuration the FPI camera, considering different IOP and EOP constraints. The experiments were performed with two FPI-hyperspectral camera data sets: the first were collected 3D terrestrial close-range calibration field and the second onboard of an UAV in a parking area in the interior of São Paulo State.


Author(s):  
A. M. G. Tommaselli ◽  
A. Berveglieri ◽  
R. A. Oliveira ◽  
L. Y. Nagai ◽  
E. Honkavaara

Flexible tools for photogrammetry and remote sensing using unmanned airborne vehicles (UAVs) have been attractive topics of research and development. The lightweight hyperspectral camera based on a Fabry-Pérot interferometer (FPI) is one of the highly interesting tools for UAV based remote sensing for environmental and agricultural applications. The camera used in this study acquires images from different wavelengths by changing the FPI gap and using two CMOS sensors. Due to the acquisition principle of this camera, the interior orientation parameters (IOP) of the spectral bands can vary for each band and sensor and changing the configuration also would change these sets of parameters posing an operational problem when several bands configurations are being used. The objective of this study is to assess the impact of use IOPs estimated for some bands in one configuration for other bands of different configuration the FPI camera, considering different IOP and EOP constraints. The experiments were performed with two FPI-hyperspectral camera data sets: the first were collected 3D terrestrial close-range calibration field and the second onboard of an UAV in a parking area in the interior of São Paulo State.


2019 ◽  
Vol 11 (12) ◽  
pp. 1404 ◽  
Author(s):  
Mariana Batista Campos ◽  
Antonio Maria Garcia Tommaselli ◽  
Letícia Ferrari Castanheiro ◽  
Raquel Alves Oliveira ◽  
Eija Honkavaara

Close range photogrammetry (CRP) with large field-of-view images has become widespread in recent years, especially in terrestrial mobile mapping systems (TMMS). However, feature-based matching (FBM) with omnidirectional images (e.g., fisheye) is challenging even for state-of-the-art methods, such as the scale-invariant feature transform (SIFT), because of the strong scale change from image to image. This paper proposes an approach to boost FBM techniques on fisheye images with recursive reduction of the search space based on epipolar geometry. The epipolar restriction is calculated with the equidistant mathematical model and the initial exterior orientation parameters (EOPs) determined with navigation sensors from TMMS. The proposed method was assessed with data sets acquired by a low-cost TMMS. The TMMS is composed of a calibrated poly-dioptric system (Ricoh Theta S) and navigation sensors aimed at outdoor applications. The assessments show that Ricoh Theta S position and attitude were estimated in a global bundle adjustment with a precision (standard deviation) of 4 cm and 0.3°, respectively, using as observations the detected matches from the proposed method. Compared with other methods based on SIFT extended to the omnidirectional geometry, our approach achieved compatible results for outdoor applications.


Author(s):  
M. Mohammadi ◽  
A. Khami ◽  
F. Rottensteiner ◽  
I. Neumann ◽  
C. Heipke

Abstract. Multi-view camera systems are used more and more frequently for applications in close-range photogrammetry, engineering geodesy and autonomous navigation, since they can cover a large portion of the environment and are considerably cheaper than alternative sensors such as laser scanners. In many cases, the cameras do not have overlapping fields of view. In this paper, we report on the development of such a system mounted on a rigid aluminium platform, and focus on its geometric system calibration. We present an approach for estimating the exterior orientation of such a multi-camera system based on bundle adjustment. We use a static environment with ground control points, which are related to the platform via a laser tracker. In the experimental part, the precision and partly accuracy that can be achieved in different scenarios is investigated. While we show that the accuracy potential of the platform is very high, the mounting calibration parameters are not necessarily precise enough to be used as constant values after calibration. However, this disadvantage can be mitigated by using those parameters as observations and refining them on-the-job.


Author(s):  
O. Kahmen ◽  
R. Rofallski ◽  
N. Conen ◽  
T. Luhmann

<p><strong>Abstract.</strong> In multimedia photogrammetry, multi-camera systems often provide scale by a calibrated relative orientation. Camera calibration via bundle adjustment is a well-established standard procedure in single-medium photogrammetry. When using standard software and applying the collinearity equations in multimedia photogrammetry, the refractive interfaces are modelled in an implicit form. This contribution analyses different calibration strategies for bundle-invariant interfaces. To evaluate the effects of implicitly modelling the refractive effects within a bundle adjustment, synthetic datasets are simulated. Contrary to many publications, systematic effects of the exterior orientations can be verified with simulated data. The behaviour of interior, exterior and relative orientation parameters is analysed using error-free synthetic datasets. The relative orientation of a stereo camera shows systematic effects, when the angle of convergence varies and when the synthetic interface is set up at different distances to the camera. It becomes clear, that in most cases the implicit modelling is not suitable for multimedia photogrammetry. An explicit modelling of the refractive interfaces is implemented into a bundle adjustment. This strict model is analysed and compared with the implicit form regarding systematic effects in orientation parameters as well as errors in object space. In a real experiment, the discrepancies between the implicit form using standard software and the explicit modelling using our own implementation are quantified. It is highly advisable to model the interfaces strictly, since the implicit modelling might lead to relevant errors in object space.</p>


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Yahya Albalawi ◽  
Jim Buckley ◽  
Nikola S. Nikolov

AbstractThis paper presents a comprehensive evaluation of data pre-processing and word embedding techniques in the context of Arabic document classification in the domain of health-related communication on social media. We evaluate 26 text pre-processings applied to Arabic tweets within the process of training a classifier to identify health-related tweets. For this task we use the (traditional) machine learning classifiers KNN, SVM, Multinomial NB and Logistic Regression. Furthermore, we report experimental results with the deep learning architectures BLSTM and CNN for the same text classification problem. Since word embeddings are more typically used as the input layer in deep networks, in the deep learning experiments we evaluate several state-of-the-art pre-trained word embeddings with the same text pre-processing applied. To achieve these goals, we use two data sets: one for both training and testing, and another for testing the generality of our models only. Our results point to the conclusion that only four out of the 26 pre-processings improve the classification accuracy significantly. For the first data set of Arabic tweets, we found that Mazajak CBOW pre-trained word embeddings as the input to a BLSTM deep network led to the most accurate classifier with F1 score of 89.7%. For the second data set, Mazajak Skip-Gram pre-trained word embeddings as the input to BLSTM led to the most accurate model with F1 score of 75.2% and accuracy of 90.7% compared to F1 score of 90.8% achieved by Mazajak CBOW for the same architecture but with lower accuracy of 70.89%. Our results also show that the performance of the best of the traditional classifier we trained is comparable to the deep learning methods on the first dataset, but significantly worse on the second dataset.


2021 ◽  
pp. 000276422110216
Author(s):  
Kazimierz M. Slomczynski ◽  
Irina Tomescu-Dubrow ◽  
Ilona Wysmulek

This article proposes a new approach to analyze protest participation measured in surveys of uneven quality. Because single international survey projects cover only a fraction of the world’s nations in specific periods, researchers increasingly turn to ex-post harmonization of different survey data sets not a priori designed as comparable. However, very few scholars systematically examine the impact of the survey data quality on substantive results. We argue that the variation in source data, especially deviations from standards of survey documentation, data processing, and computer files—proposed by methodologists of Total Survey Error, Survey Quality Monitoring, and Fitness for Intended Use—is important for analyzing protest behavior. In particular, we apply the Survey Data Recycling framework to investigate the extent to which indicators of attending demonstrations and signing petitions in 1,184 national survey projects are associated with measures of data quality, controlling for variability in the questionnaire items. We demonstrate that the null hypothesis of no impact of measures of survey quality on indicators of protest participation must be rejected. Measures of survey documentation, data processing, and computer records, taken together, explain over 5% of the intersurvey variance in the proportions of the populations attending demonstrations or signing petitions.


2012 ◽  
Vol 2012 ◽  
pp. 1-18 ◽  
Author(s):  
Magdalena Murawska ◽  
Dimitris Rizopoulos ◽  
Emmanuel Lesaffre

In transplantation studies, often longitudinal measurements are collected for important markers prior to the actual transplantation. Using only the last available measurement as a baseline covariate in a survival model for the time to graft failure discards the whole longitudinal evolution. We propose a two-stage approach to handle this type of data sets using all available information. At the first stage, we summarize the longitudinal information with nonlinear mixed-effects model, and at the second stage, we include the Empirical Bayes estimates of the subject-specific parameters as predictors in the Cox model for the time to allograft failure. To take into account that the estimated subject-specific parameters are included in the model, we use a Monte Carlo approach and sample from the posterior distribution of the random effects given the observed data. Our proposal is exemplified on a study of the impact of renal resistance evolution on the graft survival.


1994 ◽  
Vol 33 (04) ◽  
pp. 390-396 ◽  
Author(s):  
J. G. Stewart ◽  
W. G. Cole

Abstract:Metaphor graphics are data displays designed to look like corresponding variables in the real world, but in a non-literal sense of “look like”. Evaluation of the impact of these graphics on human problem solving has twice been carried out, but with conflicting results. The present experiment attempted to clarify the discrepancies between these findings by using a complex task in which expert subjects interpreted respiratory data. The metaphor graphic display led to interpretations twice as fast as a tabular (flowsheet) format, suggesting that conflict between earlier studies is due either to differences in training or to differences in goodness of metaphor, Findings to date indicate that metaphor graphics work with complex as well as simple data sets, pattern detection as well as single number reporting tasks, and with expert as well as novice subjects.


2015 ◽  
Vol 8 (1) ◽  
pp. 421-434 ◽  
Author(s):  
M. P. Jensen ◽  
T. Toto ◽  
D. Troyan ◽  
P. E. Ciesielski ◽  
D. Holdridge ◽  
...  

Abstract. The Midlatitude Continental Convective Clouds Experiment (MC3E) took place during the spring of 2011 centered in north-central Oklahoma, USA. The main goal of this field campaign was to capture the dynamical and microphysical characteristics of precipitating convective systems in the US Central Plains. A major component of the campaign was a six-site radiosonde array designed to capture the large-scale variability of the atmospheric state with the intent of deriving model forcing data sets. Over the course of the 46-day MC3E campaign, a total of 1362 radiosondes were launched from the enhanced sonde network. This manuscript provides details on the instrumentation used as part of the sounding array, the data processing activities including quality checks and humidity bias corrections and an analysis of the impacts of bias correction and algorithm assumptions on the determination of convective levels and indices. It is found that corrections for known radiosonde humidity biases and assumptions regarding the characteristics of the surface convective parcel result in significant differences in the derived values of convective levels and indices in many soundings. In addition, the impact of including the humidity corrections and quality controls on the thermodynamic profiles that are used in the derivation of a large-scale model forcing data set are investigated. The results show a significant impact on the derived large-scale vertical velocity field illustrating the importance of addressing these humidity biases.


Sign in / Sign up

Export Citation Format

Share Document