scholarly journals RESEARCH ON EVALUATION OF THE SPALLING DISEASE OF NICHE FOR BUDDHA IN GROTTOES

Author(s):  
Y. Miao ◽  
M. Hou ◽  
P. Wei

Abstract. The niche for Buddha is an important part of the cultural relics in the grottoes, but it has caused serious spalling disease due to human activities and natural disasters. This paper presents a new quantitative evaluation method for the spalling disease of niche for Buddha. First, the random forest-based method was used to identify the niche for Buddha . Then, the spatial clustering of the head of the niche for Buddha was performed by DBSCAN, and the reference surface was determined by the RANSAC algorithm. Based on this, the spallation depth of the grotto surface was extracted and the relevant index elements were established. The experiment of point cloud data in Cave 18 of Yungang Grottoes proves the rationality of this method, which is of great significance to the protection and virtual restoration of cultural relics in grottoes.

2021 ◽  
Vol 10 (9) ◽  
pp. 617
Author(s):  
Su Yang ◽  
Miaole Hou ◽  
Ahmed Shaker ◽  
Songnian Li

The digital documentation of cultural relics plays an important role in archiving, protection, and management. In the field of cultural heritage, three-dimensional (3D) point cloud data is effective at expressing complex geometric structures and geometric details on the surface of cultural relics, but lacks semantic information. To elaborate the geometric information of cultural relics and add meaningful semantic information, we propose a modeling and processing method of smart point clouds of cultural relics with complex geometries. An information modeling framework for complex geometric cultural relics was designed based on the concept of smart point clouds, in which 3D point cloud data are organized through the time dimension and different spatial scales indicating different geometric details. The proposed model allows smart point clouds or a subset to be linked with semantic information or related documents. As such, this novel information modeling framework can be used to describe rich semantic information and high-level details of geometry. The proposed information model not only expresses the complex geometric structure of the cultural relics and the geometric details on the surface, but also has rich semantic information, and can even be associated with documents. A case study of the Dazu Thousand-Hand Bodhisattva Statue, which is characterized by a variety of complex geometries, reveals that our proposed framework is capable of modeling and processing the statue with excellent applicability and expansibility. This work provides insights into the sustainable development of cultural heritage protection globally.


Author(s):  
D. L. Bool ◽  
L. C. Mabaquiao ◽  
M. E. Tupas ◽  
J. L. Fabila

<p><strong>Abstract.</strong> For the past 10 years, the Philippines has seen and experienced the growing force of different natural disasters and because of this the Philippine governement started an initiative to use LiDAR technology in the forefront of disaster management to mitigate the effects of these natural phenomenons. The study aims to help the initiative by determining the shape, number and distribution and location of buildings within a given vicinity. The study implements a Python script to automate the detection of the different buildings within a given area using a RANSAC Algorithm to process the Classified LiDAR Dataset. Pre-processing is done by clipping the LiDAR data into a sample area. The program starts by using the a Python module to read .LAS files then implements the RANSAC algorithm to detect roof planes from a given set of parameters. The detected planes are intersected and combined by the program to define the roof of a building. Points lying on the detected building are removed from the initial list and the program runs again. A sample area in Pulilan, Bulacan was used. A total of 8 out of 9 buildings in the test area were detected by the program and the difference in area between the generated shapefile and the digitized shapefile were compared.</p>


Author(s):  
L. Li ◽  
L. Pang ◽  
X. D. Zhang ◽  
H. Liu

Muti-baseLine SAR tomography can be used on 3D reconstruction of urban building based on SAR images acquired. In the near future, it is expected to become an important technical tool for urban multi-dimensional precision monitoring. For the moment,There is no effective method to verify the accuracy of tomographic SAR 3D point cloud of urban buildings. In this paper, a new method based on terrestrial Lidar 3D point cloud data to verify the accuracy of the tomographic SAR 3D point cloud data is proposed, 3D point cloud of two can be segmented into different facadeds. Then facet boundary extraction is carried out one by one, to evaluate the accuracy of tomographic SAR 3D point cloud of urban buildings. The experience select data of Pangu Plaza to analyze and compare, the result of experience show that the proposed method that evaluating the accuracy of tomographic SAR 3D point clou of urban building based on lidar 3D point cloud is validity and applicability


Author(s):  
Y. Zhang ◽  
G. Q. Zhou ◽  
S. H. Tang ◽  
P. W. Xing ◽  
C. C. Huang

Abstract. Due to the semi-random characteristics of ground points collected by airborne LIDAR system, it is difficult to control the laser pin points to fall on the control points with known coordinates in actual measurement, so the accuracy can not be evaluated by directly comparing coordinate data. In this paper, based on the target plate designed by air-to-ground, the fuzzy c-means clustering analysis algorithm is proposed to extract the point cloud data on the target according to the different echo intensity data of laser on different ground objects. The center point coordinates of the target were fitted by the point cloud data on the target using the method of circumscribed circle of edge points, so as to realize the plane precision and elevation accuracy of airborne LIDAR system of evaluation. The results show that the model fitting method can quickly and effectively evaluate the accuracy of airborne LIDAR, and the method is simple and feasible.


2021 ◽  
Vol 14 (1) ◽  
pp. 95
Author(s):  
Zhonghua Su ◽  
Zhenji Gao ◽  
Guiyun Zhou ◽  
Shihua Li ◽  
Lihui Song ◽  
...  

Planes are essential features to describe the shapes of buildings. The segmentation of a plane is significant when reconstructing a building in three dimensions. However, there is a concern about the accuracy in segmenting plane from point cloud data. The objective of this paper was to develop an effective segmentation algorithm for building planes that combines the region growing algorithm with the distance algorithm based on boundary points. The method was tested on point cloud data from a cottage and pantry as scanned using a Faro Focus 3D laser range scanner and Matterport Camera, respectively. A coarse extraction of the building plane was obtained from the region growing algorithm. The coplanar points where two planes intersect were obtained from the distance algorithm. The building plane’s optimal segmentation was then obtained by combining the coarse extraction plane points and the corresponding coplanar points. The results show that the proposed method successfully segmented the plane points of the cottage and pantry. The optimal distance thresholds using the proposed method from the uncoarse extraction plane points to each plane boundary point of cottage and pantry were 0.025 m and 0.030 m, respectively. The highest correct rate and the highest error rate of the cottage’s (pantry’s) plane segmentations using the proposed method under the optimal distance threshold were 99.93% and 2.30% (98.55% and 2.44%), respectively. The F1 score value of the cottage’s and pantry’s plane segmentations using the proposed method under the optimal distance threshold reached 97.56% and 95.75%, respectively. This method can segment different objects on the same plane, while the random sample consensus (RANSAC) algorithm causes the plane to become over-segmented. The proposed method can also extract the coplanar points at the intersection of two planes, which cannot be separated using the region growing algorithm. Although the RANSAC-RG method combining the RANSAC algorithm and the region growing algorithm can optimize the segmentation results of the RANSAC (region growing) algorithm and has little difference in segmentation effect (especially for cottage data) with the proposed method, the method still loses coplanar points at some intersection of the two planes.


Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 721
Author(s):  
Hyeon Cheol Jo ◽  
Hong-Gyoo Sohn ◽  
Yun Mook Lim

Structural health monitoring (SHM) and safety assessment are very important areas for evaluating the behavior of structures. Various wired and wireless sensors can measure the physical responses of structures, such as displacement or strain. One recently developed wireless technique is a light imaging detection and ranging (LiDAR) system that can remotely acquire three-dimensional (3D) high-precision coordinate information using 3D laser scanning. LiDAR systems have been previously used in geographic information systems (GIS) to collect information on geography and terrain. Recently, however, LiDAR is used in the SHM field to analyze structural behavior, as it can remotely detect the surface and deformation shape of structures without the need for attached sensors. This study demonstrates a strain evaluation method using a LiDAR system in order to analyze the behavior of steel structures. To evaluate the strains of structures from the initial and deformed shape, a combination of distributed 3D point cloud data and finite element methods (FEM) was used. The distributed 3D point cloud data were reconstructed into a 3D mesh model, and strains were calculated using the FEM. By using the proposed method, the strain could be calculated at any point on a structure for SHM and safety assessment during construction.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Yongshan Liu ◽  
Dehan Kong ◽  
Dandan Zhao ◽  
Xiang Gong ◽  
Guichun Han

The existing registration algorithms suffer from low precision and slow speed when registering a large amount of point cloud data. In this paper, we propose a point cloud registration algorithm based on feature extraction and matching; the algorithm helps alleviate problems of precision and speed. In the rough registration stage, the algorithm extracts feature points based on the judgment of retention points and bumps, which improves the speed of feature point extraction. In the registration process, FPFH features and Hausdorff distance are used to search for corresponding point pairs, and the RANSAC algorithm is used to eliminate incorrect point pairs, thereby improving the accuracy of the corresponding relationship. In the precise registration phase, the algorithm uses an improved normal distribution transformation (INDT) algorithm. Experimental results show that given a large amount of point cloud data, this algorithm has advantages in both time and precision.


Sign in / Sign up

Export Citation Format

Share Document