scholarly journals DIGITAL ELEVATION MODEL FROM NON-METRIC CAMERA IN UAS COMPARED WITH LIDAR TECHNOLOGY

Author(s):  
O. M. Dayamit ◽  
M. F. Pedro ◽  
R. R. Ernesto ◽  
B. L. Fernando

Digital Elevation Model (DEM) data as a representation of surface topography is highly demanded for use in spatial analysis and modelling. Aimed to that issue many methods of acquisition data and process it are developed, from traditional surveying until modern technology like LIDAR. On the other hands, in a past four year the development of Unamend Aerial System (UAS) aimed to Geomatic bring us the possibility to acquire data about surface by non-metric digital camera on board in a short time with good quality for some analysis. Data collectors have attracted tremendous attention on UAS due to possibility of the determination of volume changes over time, monitoring of the breakwaters, hydrological modelling including flood simulation, drainage networks, among others whose support in DEM for proper analysis. The DEM quality is considered as a combination of DEM accuracy and DEM suitability so; this paper is aimed to analyse the quality of the DEM from non-metric digital camera on UAS compared with a DEM from LIDAR corresponding to same geographic space covering 4 km2 in Artemisa province, Cuba. This area is in a frame of urban planning whose need to know the topographic characteristics in order to analyse hydrology behaviour and decide the best place for make roads, building and so on. Base on LIDAR technology is still more accurate method, it offer us a pattern for test DEM from non-metric digital camera on UAS, whose are much more flexible and bring a solution for many applications whose needs DEM of detail.

2021 ◽  
Vol 10 (3) ◽  
pp. 233-241
Author(s):  
Padma Paramita ◽  
Sesa Wiguna ◽  
Fathia Zulfati Shabrina ◽  
Aida Sartimbul

Indonesia merupakan negara yang memiliki potensi tinggi akan kejadian tsunami. Salah satu wilayah tersebut adalah Kabupaten Serang bagian barat. Saat ini evolusi teknologi penginderaan jauh dan Sistem Informasi Geografis (SIG) dapat dimanfaatkan untuk membantu upaya mitigasi. Tujuan penelitian ini adalah untuk menganalisis potensi tsunami dan menyediakan peta bahaya tsunami sebagai salah satu upaya mitigasi bencana berbasis Sistem Informasi Geografis (SIG) berdasarkan panduan dari Badan Nasional Penanggulangan Bencana (BNPB). Metode yang digunakan dalam penelitian ini adalah metode matematis yang dikembangkan oleh Berryman-2006. Metode ini merupakan metode yang sederhana namun cukup akurat dalam memperkirakan daerah yang berpotensi terdampak tsunami. Data Digital Elevation Model (DEM) dan shapefile rupa bumi yang bersumber dari Badan Informasi Geospasial (BIG) Indonesia merupakan data utama yang digunakan. Hasil analisis menunjukkan bahwa potensi bahaya tsunami di Kabupaten Serang bagian barat terdiri dari 3 kelas yaitu kelas rendah, sedang, dan tinggi yang didominasi oleh kelas bahaya tinggi dengan total luas area terdampak sebesar 377,64 ha. Peta bahaya tsunami ini selanjutnya dapat dijadikan sebagai salah satu basis informasi dalam perencanaan mitigasi bencana di Kabupaten Serang.  Indonesia is a country that has a high potential for tsunami events. One of these areas is the western part of Serang Regency. Currently, the evolution of remote sensing technology and Geographic Information Systems (GIS) can be utilized to assist mitigation efforts. The purpose of this study is to analyze the potential for tsunamis and provide a tsunami hazard map as one of the efforts to mitigate disasters based on Geographic Information Systems (GIS) based on guidelines from the National Disaster Management Agency (BNPB). The method used in this research is a mathematical method developed by Berryman-2006. This method is a simple but fairly accurate method for estimating areas potentially affected by a tsunami. Digital Elevation Model (DEM) data and the shapefile of the earth's appearance sourced from the Indonesian Geospatial Information Agency (BIG) are the main data used. The results of the analysis show that the potential tsunami hazard in the western part of Serang Regency consists of 3 classes, namely low, medium, and high classes which are dominated by high hazard classes with a total area of 377.64 ha affected. This tsunami hazard map can then be used as one of the information bases in disaster mitigation planning in Serang Regency.


2020 ◽  
Vol 12 (1) ◽  
pp. 190-202 ◽  
Author(s):  
Maan Habib ◽  
Yazan Alzubi ◽  
Ahmad Malkawi ◽  
Mohammad Awwad

AbstractThere is no doubt that the tremendous development of information technology was one of the driving factors behind the great growth of surveying and geodesy science. This has spawned modern geospatial techniques for data capturing, acquisition, and visualization tools. Digital elevation model (DEM) is the 3D depiction of continuous elevation data over the Earth’s surface that is produced through many procedures such as remote sensing, photogrammetry, and land surveying. DEMs are essential for various surveying and civil engineering applications to generate topographic maps for construction projects at a scale that varies from 1:500 to 1:2,000. GIS offers a powerful tool to create a DEM with high resolution from accurate land survey measurements using interpolation methods. The aim of this research is to investigate the impact of estimation techniques on generating a reliable and accurate DEM suitable for large-scale mapping. As a part of this study, the deterministic interpolation algorithms such as ANUDEM (Topo to Raster), inverse distance weighted (IDW), and triangulated irregular network (TIN) were tested using the ArcGIS desktop for elevation data obtained from real total station readings, with different landforms to show the effect of terrain roughness, data density, and interpolation process on DEM accuracy. Furthermore, comparison and validation of each interpolator were carried out through the cross-validation method and numerous graphical representations of the DEM. Finally, the results of the investigations showed that ANUDEM and TIN models are similar and significantly better than those attained from IDW.


2018 ◽  
Vol 7 (8) ◽  
pp. 300 ◽  
Author(s):  
Serajis Salekin ◽  
Jack Burgess ◽  
Justin Morgenroth ◽  
Euan Mason ◽  
Dean Meason

It is common to generate digital elevation models (DEMs) from aerial laser scanning (ALS) data. However, cost and lack of knowledge may preclude its use. In contrast, global navigation satellite systems (GNSS) are seldom used to collect and generate DEMs. These receivers have the potential to be considered as data sources for DEM interpolation, as they can be inexpensive, easy to use, and mobile. The data interpolation method and spatial resolution from this method needs to be optimised to create accurate DEMs. Moreover, the density of GNSS data is likely to affect DEM accuracy. This study investigates three different deterministic approaches, in combination with spatial resolution and data thinning, to determine their combined effects on DEM accuracy. Digital elevation models were interpolated, with resolutions ranging from 0.5 m to 10 m using natural neighbour (NaN), topo to raster (ANUDEM), and inverse distance weighted (IDW) methods. The GNSS data were thinned by 25% (0.389 points m−2), 50% (0.259 points m−2), and 75% (0.129 points m−2) and resulting DEMs were contrast against a DEM interpolated from unthinned data (0.519 points m−2). Digital elevation model accuracy was measured by root mean square error (RMSE) and mean absolute error (MAE). It was found that the highest resolution, 0.5 m, produced the lowest errors in resulting DEMs (RMSE = 0.428 m, MAE = 0.274 m). The ANUDEM method yielded the greatest DEM accuracy from a quantitative perspective (RMSE = 0.305 m and MAE = 0.197 m); however, NaN produced a more visually appealing surface. In all the assessments, IDW showed the lowest accuracy. Thinning the input data by 25% and even 50% had relatively little impact on DEM quality; however, accuracy decreased markedly at 75% thinning (0.129 points m−2). This study showed that, in a time where ALS is commonly used to generate DEMs, GNSS-surveyed data can be used to create accurate DEMs. This study confirmed the need for optimization to choose the appropriate interpolation method and spatial resolution in order to produce a reliable DEM.


2017 ◽  
Vol 31 (1) ◽  
pp. 73 ◽  
Author(s):  
Taufik Hery Purwanto

Perkembangan Unmanned Aerial Vehicle (UAV) sebagai wahana dan kamera digital non-metrik sebagai sensor semakin mempermudah dalam akuisisi data foto udara Foto Udara Format Kecil (FUFK). Penelitian ini bertujuan menerapkan metode stereoplotting digital untuk menghasilkan Digital Elevation Model (DEM) dari FUFK hasil pemotretan udara dengan wahana UAV sebagian bukit Jering yang merupakan lokasi pembangunan perumahan murah bersubsidi Godean Jogja Hill’s. Metode penelitian ini meliputi: proses perencanaan (perencanaan jalur terbang, pelaksanaan pemotretan udara), pengolahan data (kalibrasi kamera, koreksi foto udara, stereoplotting, interpolasi), dan uji akurasi. Hasil penelitian adalah blok FUFK dan DEM dengan metode stereoplotting. Kesimpulan dari penelitian ini adalah FUFK yang diperoleh dari UAV memiliki distorsi lensa yang cukup besar, oleh karena itu stereoplotting interaktif dapat diterapkan pada FUFK dengan hasil yang cukup baik jika FUFK yang digunakan telah terkoreksi dari distorsi, terutama distorsi lensa. Akurasi absolut DEM yang dihasilkan memiliki HRMSE sebesar 0.073 meter dengan horizontal accuracy yang mencapai 0.121 meter, sedangkan RMSEz yang dimiliki hanya mampu mencapai 0.482 meter dengan vertical accurasi yang mencapai 0.793 meter pada tingkat kepercayaan 90%. Berdasarkan DEM yang diperoleh, maka dapat digunakan untuk merepresentasikan konfigurasi permukaan bukit dan menghitung volume sebagian bukit Jering yang telah dikeruk sebesar 55.953,813 m3. The development of Unmanned Aerial Vehicle (UAV) as a vehicle and non-metric digital camera as a sensor further simplify the data acquisition of Small Format Aerial Photography (SFAP). This study aims to apply digital stereoplotting method for generating Digital Elevation Model (DEM) of SFAP results of aerial photography with UAV on the Jering hill which is cheap subsidized housing location named Godean Yogyakarta Hill’s. This research method includes: flight planning (flight paths, aerial photography acquisition), data processing (camera calibration, correction of aerial photographs, stereoplotting, interpolation), and accuracy test. Results of the research was SFAP block and DEM generated from stereoplotting method. The conclusion of this study is SFAP obtained from UAV has a lens distortion is large, and therefore can be applied to interactive stereoplotting SFAP with fairly good results if SFAP used has been corrected of distortion, especially distortion lens (idealized). The absolute accuracy of the resulting DEM have HRMSE of 0,073 meters with a horizontal accuracy which reaches 0,121 meters, while RMSEz only able to reach 0,482 meters with a vertical accuracy which reaches 0793 meters at 90% confidence level. Based on the DEM obtained, it can be used to represent the surface configuration and to calculate the volume partially Jering hill that has been dredged out for is 55.953,813 m3.  


2021 ◽  
Vol 19 ◽  
Author(s):  
Munirah Radin Mohd Mokhtar ◽  
Suriani Ngah Abdul Wahab ◽  
Mohd Najib Husain ◽  
Haslina Hashim ◽  
Asmma’ Che Kasim

This paper presents the preliminary results of a simulation study on the production of low cost Digital Elevation Model (DEM) for a landslide study area in Seri Iskandar, Perak. The important objective of this paper is to present the potentiality of Close Range Photogrammetry (CRP) as a data acquisition tool in producing a Digital Elevation Model (DEM) by using data from surface measurement. This method was applied using stereopair photographs captured data from ground level detection, or known as close range photogrammetry with the use of a digital camera mounted on a tripod as a tool for data collection. Close Range Photogrammetry (CRP) applications is useful for mapping of areas that are difficult and risky to point manpower on terrain that consist of steep and dangerous slopes. Conventional methods require measurement using Electronic Distance Measuring (EDM), but this method is very costly and requires a survey team placed on the land site area. The research data were carried out with two different epoch data. The outcome proves that CRP can produce DEM with less cost compared to other methods.


2018 ◽  
Vol 12 (5-6) ◽  
pp. 50-57 ◽  
Author(s):  
I. S. Voskresensky ◽  
A. A. Suchilin ◽  
L. A. Ushakova ◽  
V. M. Shaforostov ◽  
A. L. Entin ◽  
...  

To use unmanned aerial vehicles (UAVs) for obtaining digital elevation models (DEM) and digital terrain models (DTM) is currently actively practiced in scientific and practical purposes. This technology has many advantages: efficiency, ease of use, and the possibility of application on relatively small area. This allows us to perform qualitative and quantitative studies of the progress of dangerous relief-forming processes and to assess their consequences quickly. In this paper, we describe the process of obtaining a digital elevation model (DEM) of the relief of the slope located on the bank of the Protva River (Satino training site of the Faculty of Geography, Lomonosov Moscow State University). To obtain the digital elevation model, we created a temporary geodetic network. The coordinates of the points were measured by the satellite positioning method using a highprecision mobile complex. The aerial survey was carried out using an unmanned aerial vehicle from a low altitude (about 40–45 m). The processing of survey materials was performed via automatic photogrammetry (Structure-from-Motion method), and the digital elevation model of the landslide surface on the Protva River valley section was created. Remote sensing was supplemented by studying archival materials of aerial photography, as well as field survey conducted immediately after the landslide. The total amount of research results made it possible to establish the causes and character of the landslide process on the study site. According to the geomorphological conditions of formation, the landslide refers to a variety of landslideslides, which are formed when water is saturated with loose deposits. The landslide body was formed with the "collapse" of the blocks of turf and deluvial loams and their "destruction" as they shifted and accumulated at the foot of the slope.


Sign in / Sign up

Export Citation Format

Share Document