scholarly journals Swing control for a three-link brachiation robot based on sliding-mode control on irregularly distributed bars

2021 ◽  
Vol 12 (2) ◽  
pp. 1073-1081
Author(s):  
Zhiguo Lu ◽  
Guoshuai Liu ◽  
Haibin Zhao ◽  
Ruchao Wang ◽  
Chong Liu

Abstract. The bionic-gibbon robot is a popular bionic robot. The bionic-gibbon robot can imitate a gibbon in completing brachiation motion between branches. With nonlinear and underactuated properties, the robot has important research value. This paper designs a type of bionic-gibbon robot with three links and two grippers. To simplify the controller, a plane control model is proposed, and its dynamic model is established. The control strategy in this paper divides the brachiation motion into several processes: adjust posture, open the gripper, the swing process and close the gripper. Based on sliding-mode control (SMC), the control method for the swing process is designed. The target position of the brachiation motion is set as the origin of the sliding-mode surface. In a finite time, the robot will reach the target position along the approach rate we adopt. In this way, the robot can complete the desired brachiation motion only by setting the position parameters of the target bar. We perform some simulations in ROS-Gazebo. The simulation results show that the bionic-gibbon robot can complete continuous brachiation motion on irregularly distributed bars. The sliding-mode control and the three-link structure significantly improve the robustness and swing efficiency of the bionic-gibbon robot.

2011 ◽  
Vol 383-390 ◽  
pp. 543-547
Author(s):  
Rui Hou ◽  
Cai Ping Li

This paper studies the control strategy of STATCOM with LCL filter. The STATCOM sixth orders differential equations in dq coordinate separate to two parts. Invert system theory deals with their uncoupling and nonlinearity. Then the sliding mode control strategy is used to the differential equations. Finally simulation results show validity and effectiveness of the design by comparing with PI controller.


2011 ◽  
Vol 378-379 ◽  
pp. 521-524
Author(s):  
Li Ping Fan ◽  
Ying Song ◽  
Jun Zhang

Bioprocesses have high nonlinearity and parameter uncertainty. In view of these specific natures of the bioreactor, system identification method was firstly used to linearize the nonlinear system and simplify the model of the biological reactor; then a new sliding mode controller with adaptive reaching law is designed for the reactor. The control method can not only analysis the sliding mode movement near or along the switching surface, but also design the dynamic process in trending segments of the system effectively, thus ensure good movement quality in the entire state space. Simulation results prove that the sliding mode control with adaptive reaching law can improve the control performance with negligible chattering and enhanced robustness.


2021 ◽  
Vol 11 (4) ◽  
pp. 1417
Author(s):  
Kyunghyun Lee ◽  
Sangkyeum Kim ◽  
Seongwoo Kwak ◽  
Kwanho You

We propose a control method wherein the estimated angles converge to the desired value for quadrotor attitude stabilization and position tracking. To improve the performance of a quadrotor system, the unmeasured states of the quadrotor are estimated using a sliding mode observer (SMO). We set up a quadrotor dynamic model and augment the quadrotor dynamics by an SMO. We also derive the control inputs by sliding mode control (SMC) and calculate the desired angle of the quadrotor to reach the target position with the control inputs. For fast convergence speed and increased robustness of tracking performance, a nonlinear sliding surface is applied to SMC. The angle of the quadrotor converges to the desired value through the operation of SMC with a nonlinear sliding surface. The target tracking performance is improved by adaptively switching the deceleration curve of the sliding mode surface with a nonlinear curve. Using a tracking system based on a nonlinear surface sliding mode control (NSMC) and SMO, the quadrotor reaches the target position with a decreased settling time. The performance and effectiveness of the proposed system are proved through simulation results.


Author(s):  
Hassan Jassim Motlak ◽  
Ahmed S. Rahi

In last years, dc-dc converters solve the most issues in the industrial application in the area of power electronics, especially renewable energy, military applications and affiliated engineering developments. They are used to convert the DC input that unregulated to regulated output perhaps larger or smaller than input according to the type of converters. This paper presents three primary control method used for negative output Super lift Luo DC-DC converter. These methods include a Voltage mode control (VMC), Current mode control (CMC), and Sliding mode control (SMC). The goal of this article is to study and selected an appropriate and superior control scheme for negative DC-DC converters. The simulation results show the effectiveness of Sliding mode control for enhancing the performance of the negative dc-dc converter. Also, this method can keep the output voltage constant under load conditions. simulation results obtained by the MATLAB/Simulink environment.


2019 ◽  
Vol 29 (3) ◽  
pp. 517-525 ◽  
Author(s):  
Andrzej Bartoszewicz ◽  
Katarzyna Adamiak

Abstract This study presents a new, reference trajectory based sliding mode control strategy for disturbed discrete time dynamical systems. The desired trajectory, which is generated externally according to an existing switching type reaching law, determines the properties of the emerging sliding motion of the system. It is proved that an appropriate choice of the trajectory generator parameters ensures the existence of the quasi-sliding motion of the system according to the definition by Gao et al. (1995) in spite of the influence of disturbances. Moreover, the paper shows that the application of the desired trajectory based reaching law results in a significant reduction in the quasi-sliding mode band width and errors of all state variables. Therefore, in comparison with Gao’s control method, the system’s robustness is increased. The paper also presents an additional modification of the reaching law, which guarantees a further reduction in the quasi-sliding mode band in the case of slowly varying disturbances. The results are confirmed with a simulation example.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Lei Zhang ◽  
Jing Bai ◽  
Jing Wu

To achieve the high-performance control of the surface-mounted permanent magnet synchronous motor (SPMSM) speed control system, this paper proposes a high-order sliding mode control strategy based on a new super twisting algorithm (NSTA). This strategy introduces an adaptive term in its proportional term based on the original super twisting algorithm, which solves low reaching speed and poor antidisturbance ability due to the square root calculation of proportional term in the original super twisting algorithm. The simulation results show that the proposed strategy can effectively improve the system’s response speed and antidisturbance and greatly suppress the chattering phenomenon of traditional sliding mode control.


2012 ◽  
Vol 220-223 ◽  
pp. 1148-1152 ◽  
Author(s):  
Li Dong Guo ◽  
Li Xin Yang ◽  
He Ming Jia

A dynamic sliding-mode control (DSMC) with backstepping is proposed for diving control of autonomous underwater vehicle (AUV), where surge force and stern plane are only available for vehicle's 3DOF diving motion. First, an equivalent model of AUV is developed. Then, the DSMC with an asymptotical sliding surface is proposed for the trajectory tracking control of AUV. Moreover, the analysis of stability can be completed by Lyapunov stability theory. Finally, To demonstrate the effectiveness of the proposed method, the simulation results are illustrated in this paper. simulation results show that, the tracking precision and the robustness of the system are improved under the proposed control method.


Actuators ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 3
Author(s):  
Mingkang Wang ◽  
Yan Wang ◽  
Rongrong Yang ◽  
Yongling Fu ◽  
Deming Zhu

Electro-hydrostatic actuator (EHA) has significance in a variety of industrial tasks. For the purpose of elevating the working performance, we put forward a sliding mode control strategy for EHA operation with a damping variable sliding surface. To start with, a novel sliding mode controller and an extended state observer (ESO) are established to perform the proposed control strategy. Furthermore, based on the modeling of the EHA, simulations are carried out to analyze the working properties of the controller. More importantly, experiments are conducted for performance evaluation based on the simulation results. In comparison to the widely used control strategies, the experimental results establish strong evidence of both overshoot suppression and system rapidity.


Sign in / Sign up

Export Citation Format

Share Document