scholarly journals Change of extreme rainfall indexes at Ebro River Basin

2012 ◽  
Vol 12 (7) ◽  
pp. 2127-2137 ◽  
Author(s):  
J. L. Valencia ◽  
A. M. Tarquis ◽  
A. Saá-Requejo ◽  
J. M. Gascó

Abstract. Extreme rainfall events are a serious concern for regional hydrology and agriculture in the Ebro River Basin. Repeated anomalous rainfall in recent decades has had a devastating impact on this region, both socially and economically. Some studies developed in Italy and USA have shown that there is a change in seasonal patterns and an increasing frequency of extreme rainfall events, whereas other studies have pointed out that no global behaviour could be observed in monthly trends due to high climatic variability. The aim of this work is to test which of these scenarios is the case for the Ebro River Basin. For this purpose, 14 meteorological stations were selected based on the length of the rainfall series and the climatic classification to obtain a representative untreated dataset from the river basin. Daily rainfall series from 1957 to 2002 were obtained from each meteorological station. First, classical climatic indexes were analysed with an autoregressive test to study possible trends in rainfall. The results can be explained following the evolution of the NAO and WeMO indexes, which indicate that the initial period should be subdivided in two periods (1957–1979 and 1980–2002) to assume stationarity and to analyse the rainfall distribution functions. The general results obtained in this study for both sub-periods, through the generalised Pareto distribution (GPD) parameters and the maximum expected return values, do not support the results previously obtained by other authors that affirm a positive trend in extreme rainfall indexes and point to a slight reduction indicated by others. Three extreme precipitation indexes show negative statistical significant trends. GPD-scale parameters decrease except for only one rain gauge, although this decrease is only statistically significant for two rain gauges. Another two locations show statistical significance decreased for maximum expected return values.

2002 ◽  
Vol 45 (2) ◽  
pp. 55-61 ◽  
Author(s):  
G. Vaes ◽  
P. Willems ◽  
J. Berlamont

In 1999 the digitisation of old rainfall records of measurements at Uccle (Belgium) was completed, which resulted in a unique rainfall series of 100 years (period 1898-1997). This is an ideal opportunity to search for trends in the rainfall over the last century. Large variations in rainfall probability over the century have been observed. For small aggregation levels there is a small decrease in extreme rainfall events over the century. For large aggregation levels there is a more explicit increase in extreme rainfall. Because the rainfall on seasonal aggregation level is only slightly increased, the increase in extreme rainfall events for aggregation levels between a few days and a few months can only occur due to larger clustering. However, the final conclusion is that no significant trend can be observed. A pure random variation of the rainfall can cause equally large variations. This does not exclude a possible trend in flooding frequency, due to the strong increase in urbanisation over the last century.


Author(s):  
J. R. Santillan ◽  
A. M. Amora ◽  
M. Makinano-Santillan ◽  
J. T. Marqueso ◽  
L. C. Cutamora ◽  
...  

In this paper, we present a combined geospatial and two dimensional (2D) flood modeling approach to assess the impacts of flooding due to extreme rainfall events. We developed and implemented this approach to the Tago River Basin in the province of Surigao del Sur in Mindanao, Philippines, an area which suffered great damage due to flooding caused by Tropical Storms Lingling and Jangmi in the year 2014. The geospatial component of the approach involves extraction of several layers of information such as detailed topography/terrain, man-made features (buildings, roads, bridges) from 1-m spatial resolution LiDAR Digital Surface and Terrain Models (DTM/DSMs), and recent land-cover from Landsat 7 ETM+ and Landsat 8 OLI images. We then used these layers as inputs in developing a Hydrologic Engineering Center Hydrologic Modeling System (HEC HMS)-based hydrologic model, and a hydraulic model based on the 2D module of the latest version of HEC River Analysis System (RAS) to dynamically simulate and map the depth and extent of flooding due to extreme rainfall events. The extreme rainfall events used in the simulation represent 6 hypothetical rainfall events with return periods of 2, 5, 10, 25, 50, and 100 years. For each event, maximum flood depth maps were generated from the simulations, and these maps were further transformed into hazard maps by categorizing the flood depth into low, medium and high hazard levels. Using both the flood hazard maps and the layers of information extracted from remotely-sensed datasets in spatial overlay analysis, we were then able to estimate and assess the impacts of these flooding events to buildings, roads, bridges and landcover. Results of the assessments revealed increase in number of buildings, roads and bridges; and increase in areas of land-cover exposed to various flood hazards as rainfall events become more extreme. The wealth of information generated from the flood impact assessment using the approach can be very useful to the local government units and the concerned communities within Tago River Basin as an aid in determining in an advance manner all those infrastructures (buildings, roads and bridges) and land-cover that can be affected by different extreme rainfall event flood scenarios.


2021 ◽  
Author(s):  
Moses.A Ojara ◽  
Yunsheng Lou ◽  
Hasssen Babaousmail ◽  
Peter Wasswa

Abstract East African countries (Uganda, Kenya, Tanzania, Rwanda, and Burundi) are prone to weather extreme events. In this regard; the past occurrence of extreme rainfall events is analyzed for 25 stations following the Expert Team on Climate Change Detection and Indices (ETCCDI) regression method. Detrended Fluctuation Analysis (DFA) is used to show the future development of extreme events. Pearson’s correlation analysis is performed to show the relationship of extreme events between different rainfall zones and their association with El Niño -Southern Oscillation (ENSO and Indian Ocean dipole (IOD) IOD-DMI indices. Results revealed that the consecutive wet day's index (CWD) was decreasing trend in 72% of the stations analyzed, moreover consecutive dry days (CDD) index also indicated a positive trend in 44% of the stations analyzed. Heavy rainfall days index (R10mm) showed a positive trend at 52% of the stations and was statistically significant at a few stations. In light of the extremely heavy rainfall days (R25mm) index, 56% of the stations revealed a decreasing trend for the index and statistically significant trend at some stations. Further, a low correlation coefficient of extreme rainfall events in the regions; and between rainfall extreme indices with the atmospheric teleconnection indices (Dipole Mode Index-DMI and Nino 3.4) (r = -0.1 to r = 0.35). Most rainfall zones showed a positive correlation between the R95p index and DMI, while 5/8 of the rainfall zones experienced a negative correlation between Nino 3.4 index and the R95p. In light of the highly variable trends of extremes events, we recommend planning adaptation and mitigation measures that consider the occurrence of such high variability. Measures such as rainwater harvesting, stored and used during needs, planned settlement, and improved drainage systems management supported by accurate climate and weather forecasts is highly advised.


2020 ◽  
Vol 18 ◽  
pp. 100316
Author(s):  
Vinicius Alexandre Sikora de Souza ◽  
Daniel Medeiros Moreira ◽  
Otto Corrêa Rotunno Filho ◽  
Anderson Paulo Rudke

Atmosphere ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 71 ◽  
Author(s):  
Douglas K. Miller ◽  
Chelcy Ford Miniat ◽  
Richard M. Wooten ◽  
Ana P. Barros

Previous examination of rain gauge observations over a five-year period at high elevations within a river basin of the southern Appalachian Mountains showed that half of the extreme (upper 2.5%) rainfall events were associated with an atmospheric river (AR). Of these extreme events having an AR association, over 73% were linked to a societal hazard at downstream locations in eastern Tennessee and western North Carolina. Our analysis in this study was expanded to investigate AR effects in the southern Appalachian Mountains on two river basins, located 60 km apart, and examine their influence on extreme rainfall, periods of elevated precipitation and landslide events over two time periods, the ‘recent’ and ‘distant’ past. Results showed that slightly more than half of the extreme rainfall events were directly attributable to an AR in both river basins. However, there was disagreement on individual ARs influencing extreme rainfall events in each basin, seemingly a reflection of its proximity to the Blue Ridge Escarpment and the localized terrain lining the river basin boundary. Days having at least one landslide occurring in western North Carolina were found to be correlated with long periods of elevated precipitation, which often also corresponded to the influence of ARs and extreme rainfall events.


Author(s):  
J. R. Santillan ◽  
A. M. Amora ◽  
M. Makinano-Santillan ◽  
J. T. Marqueso ◽  
L. C. Cutamora ◽  
...  

In this paper, we present a combined geospatial and two dimensional (2D) flood modeling approach to assess the impacts of flooding due to extreme rainfall events. We developed and implemented this approach to the Tago River Basin in the province of Surigao del Sur in Mindanao, Philippines, an area which suffered great damage due to flooding caused by Tropical Storms Lingling and Jangmi in the year 2014. The geospatial component of the approach involves extraction of several layers of information such as detailed topography/terrain, man-made features (buildings, roads, bridges) from 1-m spatial resolution LiDAR Digital Surface and Terrain Models (DTM/DSMs), and recent land-cover from Landsat 7 ETM+ and Landsat 8 OLI images. We then used these layers as inputs in developing a Hydrologic Engineering Center Hydrologic Modeling System (HEC HMS)-based hydrologic model, and a hydraulic model based on the 2D module of the latest version of HEC River Analysis System (RAS) to dynamically simulate and map the depth and extent of flooding due to extreme rainfall events. The extreme rainfall events used in the simulation represent 6 hypothetical rainfall events with return periods of 2, 5, 10, 25, 50, and 100 years. For each event, maximum flood depth maps were generated from the simulations, and these maps were further transformed into hazard maps by categorizing the flood depth into low, medium and high hazard levels. Using both the flood hazard maps and the layers of information extracted from remotely-sensed datasets in spatial overlay analysis, we were then able to estimate and assess the impacts of these flooding events to buildings, roads, bridges and landcover. Results of the assessments revealed increase in number of buildings, roads and bridges; and increase in areas of land-cover exposed to various flood hazards as rainfall events become more extreme. The wealth of information generated from the flood impact assessment using the approach can be very useful to the local government units and the concerned communities within Tago River Basin as an aid in determining in an advance manner all those infrastructures (buildings, roads and bridges) and land-cover that can be affected by different extreme rainfall event flood scenarios.


Sign in / Sign up

Export Citation Format

Share Document