flooding frequency
Recently Published Documents


TOTAL DOCUMENTS

37
(FIVE YEARS 15)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
Vol 132 ◽  
pp. 108312
Author(s):  
Agnieszka Sendek ◽  
Lena Kretz ◽  
Fons van der Plas ◽  
Carolin Seele-Dilbat ◽  
Christiane Schulz-Zunkel ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Ketil Koop-Jakobsen ◽  
Robert J. Meier ◽  
Peter Mueller

In the last decades, the spread of Elymus athericus has caused significant changes to the plant community composition and ecosystem services of European marshes. The distribution of E. athericus was typically limited by soil conditions characteristic for high marshes, such as low flooding frequency and high soil aeration. However, recently the spread of E. athericus has begun to also include low-marsh environments. A high-marsh ecotype and a low-marsh ecotype of E. athericus have been described, where the latter possess habitat-specific phenotypic traits facilitating a better adaption for inhabiting low-marsh areas. In this study, planar optodes were applied to investigate plant-mediated sediment oxygenation in E. athericus, which is a characteristic trait for marsh plants inhabiting frequently flooded environments. Under waterlogged conditions, oxygen (O2) was translocated from aboveground sources to the roots, where it leaked out into the surrounding sediment generating oxic root zones below the sediment surface. Oxic root zones were clearly visible in the optode images, and no differences were found in the O2-leaking capacity between ecotypes. Concentration profiles measured perpendicular to the roots revealed that the radius of the oxic root zones ranged from 0.5 to 2.6 mm measured from the root surface to the bulk anoxic sediment. The variation of oxic root zones was monitored over three consecutive light–dark cycles (12 h/12 h). The O2 concentration of the oxic root zones was markedly reduced in darkness, yet the sediment still remained oxic in the immediate vicinity of the roots. Increased stomatal conductance improving the access to atmospheric O2 as well as photosynthetic O2 production are likely factors facilitating the improved rhizosphere oxygenation during light exposure of the aboveground biomass. E. athericus’ capacity to oxygenate its rhizosphere is an inheritable trait that may facilitate its spread into low-marsh areas. Furthermore, this trait makes E. athericus a highly competitive species in marshes facing the effects of accelerated sea-level rise, where waterlogged sediment conditions could become increasingly pronounced.


2021 ◽  
Author(s):  
SA Stephens ◽  
RG Bell ◽  
Judith Lawrence

© 2018 The Author(s). Published by IOP Publishing Ltd. Dynamic adaptive policy pathways (DAPP) is emerging as a 'fit-for-purpose' method for climate-change adaptation planning to address widening future uncertainty and long planning timeframes. A key component of DAPP is to monitor indicators of change such as flooding and storm events, which can trigger timely adaptive actions (change pathway/behavior) ahead of thresholds. Signals and triggers are needed to support DAPP - the signal provides early warning of the emergence of the trigger (decision-point), and the trigger initiates the process to change pathway before a harmful adaptation-threshold is reached. We demonstrate a new approach to designing signals and triggers using the case of increased flooding as sea level continues to rise. The flooding frequency is framed in terms of probable timing of several events reaching a specific height threshold within a set monitoring period. This framing is well suited to adaptive planning for different hazards, because it allows the period over which threshold exceedances are monitored to be specified, and thus allows action before adaptation-thresholds are reached, while accounting for the potential range of timing and providing a probability of premature warning, or of triggering adaptation too late. For our New Zealand sea level case study, we expect early signals to be observed in 10 year monitoring periods beginning 2021. Some urgency is therefore required to begin the assessment, planning and community engagement required to develop adaptive plans and associated signals and triggers for monitoring. Worldwide, greater urgency is required at tide-dominated sites than those adapted to large storm-surges. Triggers can be designed with confidence that a change in behavior pathway (e.g. relocating communities) will be triggered before an adaptation-threshold occurs. However, it is difficult to avoid the potential for premature adaptation. Therefore, political, social, economic, or cultural signals are also needed to complement the signals and triggers based on coastal-hazard considerations alone.


2021 ◽  
Author(s):  
SA Stephens ◽  
RG Bell ◽  
Judith Lawrence

© 2018 The Author(s). Published by IOP Publishing Ltd. Dynamic adaptive policy pathways (DAPP) is emerging as a 'fit-for-purpose' method for climate-change adaptation planning to address widening future uncertainty and long planning timeframes. A key component of DAPP is to monitor indicators of change such as flooding and storm events, which can trigger timely adaptive actions (change pathway/behavior) ahead of thresholds. Signals and triggers are needed to support DAPP - the signal provides early warning of the emergence of the trigger (decision-point), and the trigger initiates the process to change pathway before a harmful adaptation-threshold is reached. We demonstrate a new approach to designing signals and triggers using the case of increased flooding as sea level continues to rise. The flooding frequency is framed in terms of probable timing of several events reaching a specific height threshold within a set monitoring period. This framing is well suited to adaptive planning for different hazards, because it allows the period over which threshold exceedances are monitored to be specified, and thus allows action before adaptation-thresholds are reached, while accounting for the potential range of timing and providing a probability of premature warning, or of triggering adaptation too late. For our New Zealand sea level case study, we expect early signals to be observed in 10 year monitoring periods beginning 2021. Some urgency is therefore required to begin the assessment, planning and community engagement required to develop adaptive plans and associated signals and triggers for monitoring. Worldwide, greater urgency is required at tide-dominated sites than those adapted to large storm-surges. Triggers can be designed with confidence that a change in behavior pathway (e.g. relocating communities) will be triggered before an adaptation-threshold occurs. However, it is difficult to avoid the potential for premature adaptation. Therefore, political, social, economic, or cultural signals are also needed to complement the signals and triggers based on coastal-hazard considerations alone.


2021 ◽  
Vol 18 (2) ◽  
pp. 403-411
Author(s):  
Svenja Reents ◽  
Peter Mueller ◽  
Hao Tang ◽  
Kai Jensen ◽  
Stefanie Nolte

Abstract. The persistence of tidal wetland ecosystems like salt marshes is threatened by human interventions and climate change. In particular, the threat of accelerated sea level rise (SLR) has increasingly gained the attention of the scientific community recently. However, studies investigating the effect of SLR on plants and vertical marsh accretion are usually restricted to the species or community level and do not consider phenotypic plasticity or genetic diversity. To investigate the response of genotypes within the same salt-marsh species to SLR, we used two known genotypes of Elymus athericus (Link) Kerguélen (low-marsh and high-marsh genotypes). In a factorial marsh organ experiment we exposed both genotypes to different flooding frequencies and quantified plant growth parameters. With increasing flooding frequency, the low-marsh genotype showed higher aboveground biomass production compared to the high-marsh genotype. Additionally, the low-marsh genotype generally formed longer rhizomes, shoots and leaves, regardless of flooding frequency. Belowground biomass of both genotypes decreased with increasing flooding frequency. We conclude that the low-marsh genotype is better adapted to higher flooding frequencies through its ability to allocate resources from below- to aboveground biomass. Given the strong control of plant biomass production on salt-marsh accretion, we argue that these findings yield important implications for our understanding of ecosystem resilience to SLR as well as plant species distribution in salt marshes.


The Holocene ◽  
2020 ◽  
pp. 095968362098172
Author(s):  
Denis Aleksandrovich Gavrilov ◽  
Talgat Bazarbaevich Mamirov

The natural environment and prehistoric human activity in the Holocene floodplains of the Low Volga River and in the southern Urals are important research objects in geomorphology, soil science and archaeology. The alternating sequences of soil-alluvium sequences represent a sedimentary archive with chrono-stratigraphic records of human land use, sediment accumulation and soil formation. The central floodplain of the Derkul River (western Kazakhstan) was studied using the multiproxy approach to investigate the soil-alluvium sequence dating from 8000 years ago until the present and containing a buried Stagnic Fluvic Phaeozem. Alluvial deposition began with stream sedimentation in the early Holocene, followed by a prolonged period of soil formation under low water conditions (7.5–5.7 ka cal year BP). Humans started habitation the floodplain in 6.6–5.7 ka cal year BP. Increased atmospheric precipitation in 5.7–3.4 ka cal year BP accelerated alluvial sedimentation. Soil formation followed the synsedimentation model. Conditions for the stationary land use by humans in the floodplain were less optimal. In 3.4–2.1 ka cal year BP, alluvial sedimentation was less pronounced, and solonetz carbonated soils were formed, reflecting increased climate aridity and continentality. Humans returned to the floodplain area, but in 2.1–1.9 ka cal year BP, the flooding frequency increased, and in 1.9 ka cal year BP, the surface of the floodplain passes to function in a high floodplain. Thus, synsedimentation formation resumed, with colluvium discharge from the adjacent hills being the main source of material input.


2020 ◽  
Vol 12 (23) ◽  
pp. 10103
Author(s):  
Shuling Yu ◽  
Xiaoyu Li ◽  
Subang An ◽  
Yanli Yang ◽  
Na Zhang ◽  
...  

Hydrological recovery is the basis for restoring the structure and function of wetlands in semiarid and arid areas of China. Selecting an appropriate hydrological recovery mode may be helpful for improving the effectiveness of wetland restoration. We conducted pot experiments to study the effects of the flooding frequency, duration, depth, and occurrence time on the height, biomass, ion contents, and photosynthetic physiology of Phragmites australis in degraded saline–alkaline marsh in the West Songnen Plain, China. At the end of the growing season, we found that the biomass, photosynthetic parameters, and water use efficiency (WUE) of the leaves increased, whereas the Na+ concentration decreased, and the K+ content remained unchanged under an increased flooding frequency treatment. As the flooding depth increased, the plant height increased, but there were no differences in the photosynthetic parameters, biomass, and WUE under flooding at 5 cm and 10 cm. Under different flooding duration treatments, the plant height and biomass were greater, but the photosynthetic parameters and Na+ and K+ contents were lower under a flooding duration of three months. The flooding occurrence time had little effect on the growth of P. australis. Our results indicate that the flooding frequency and duration had greater effects than the flooding depth and occurrence time in the hydrological recovery model for P. australis restoration. The biomass accumulated by P. australis was related to lower Na+ contents and the maintenance of a high K+/Na+ contents, and WUE increased by adjusting photosynthesis under a moderate flooding frequency and duration. These results have important implications for the restoration of degraded semiarid wetlands with man-made channel systems in conditions with limited freshwater resources.


2020 ◽  
Vol 24 (10) ◽  
pp. 4743-4761
Author(s):  
Hui Sheng ◽  
Xiaomei Xu ◽  
Jian Hua Gao ◽  
Albert J. Kettner ◽  
Yong Shi ◽  
...  

Abstract. Accurate determination of past flooding characteristics is necessary to effectively predict the future flood disaster risk and dominant controls. However, understanding the effects of environmental forcing on past flooding frequency and magnitude is difficult owing to the deficiency of observations (data available for less than 10 % of the world's rivers) and extremely short measurement time series (<100 years). In this study, a numerical model, HYDROTREND, which generates synthetic time series of daily water discharge at a river outlet, was applied to the Yalu River to (1) reconstruct annual peak discharges over the past 1000 years and estimate flood annual exceedance probabilities and (2) identify and quantify the impacts of climate change and human activity (runoff yield induced by deforestation and dam retention) on the flooding frequency and magnitude. Climate data obtained from meteorological stations and ECHO-G climate model output, morphological characteristics (hypsometry, drainage area, river length, slope, and lapse rate), and hydrological properties (groundwater properties, canopy interception effects, cascade reservoir retention effect, and saturated hydraulic conductivity) form significant reliable model inputs. Monitored for decades, some proxies on ancient floods allow for accurate calibration and validation of numerical modeling. Simulations match well the present-day monitored data (1958–2012) and the literature records of historical flood events (1000–1958). They indicate that flood frequencies of the Yalu River increased during 1000–1940, followed by a decrease until the present day. Frequency trends were strongly modulated by climate variability, particularly by the intensity and frequency of rainfall events. The magnitudes of larger floods, events with a return period of 50 to 100 years, increased by 19.1 % and 13.9 %, respectively, due to climate variability over the last millennium. Anthropogenic processes were found to either enhance or reduce flooding, depending on the type of human activities. Deforestation increased the magnitude of larger floods (100- and 50-year floods) by 19.2 %–20.3 %, but the construction of cascade reservoirs in 1940 significantly reduced their magnitude by 36.7 % to 41.7 %. We conclude that under intensified climate change and human activities in the future, effective river engineering should be considered, particularly for small- and medium-sized mountainous river systems, which are at a higher risk of flood disasters owing to their relatively poor hydrological regulation capacity.


Sign in / Sign up

Export Citation Format

Share Document