scholarly journals Debris-flow forecasting at regional scale by combining susceptibility mapping and radar rainfall

2015 ◽  
Vol 15 (3) ◽  
pp. 587-602 ◽  
Author(s):  
M. Berenguer ◽  
D. Sempere-Torres ◽  
M. Hürlimann

Abstract. This work presents a technique for debris-flow (DF) forecasting able to be used in the framework of DF early warning systems at regional scale. The developed system is applied at subbasin scale and is based on the concepts of fuzzy logic to combine two ingredients: (i) DF subbasin susceptibility assessment based on geomorphological variables and (ii) the magnitude of the rainfall situation as depicted from radar rainfall estimates. The output of the developed technique is a three-class warning ("low", "moderate" or "high") in each subbasin when a new radar rainfall map is available. The developed technique has been applied in a domain in the eastern Pyrenees (Spain) from May to October 2010. The warning level stayed "low" during the entire period in 20% of the subbasins, while in the most susceptible subbasins the warning level was at least "moderate" for up to 10 days. Quantitative evaluation of the warning level was possible in a subbasin where debris flows were monitored during the analysis period. The technique was able to identify the three events observed in the catchment (one debris flow and two hyperconcentrated flow events) and produced no false alarm.

2014 ◽  
Vol 2 (10) ◽  
pp. 6295-6338
Author(s):  
M. Berenguer ◽  
D. Sempere-Torres ◽  
M. Hürlimann

Abstract. This work presents a technique for debris flow (DF) hazard assessment able to be used in the framework of DF early warning systems at regional scale. The developed system is applied at subbasin scale and is based on the concepts of fuzzy logic to combine two ingredients: (i) DF subbasin susceptibility assessment based on geomorphological variables, and (ii) the magnitude of the rainfall situation as depicted from radar rainfall estimates. The output of the developed technique is a three-class hazard level ("low", "moderate" and "high") in each subbasin when a new radar rainfall map is available. The developed technique has been applied in a domain in the Eastern Pyrenees (Spain) from May to October 2010. The estimated hazard level stayed "low" during the entire period in 20% of the subbasins, while, in the most susceptible subbasins, the hazard level was at least moderate for up to10 days. Quantitative evaluation of the estimated hazard level was possible in a subbasin where debris flows were monitored during the analysis period. The technique was able to identify the 3 events observed in the catchment (1 debris flow and 2 hyperconcentrated flow events) and produced no false alarm.


2020 ◽  
Author(s):  
Rosa M Palau ◽  
Marc Berenguer ◽  
Marcel Hürlimann ◽  
Daniel Sempere-Torres ◽  
Catherine Berger ◽  
...  

<p>Risk mitigation for rainfall-triggered shallow slides and debris flows at regional scale is challenging. Early warning systems are a helpful tool to depict the location and time of future landslide events so that emergency managers can act in advance. Recently, some of the regions that are recurrently affected by rainfall triggered landslides have developed operational landslide early warning systems (LEWS). However, there are still many territories where this phenomenon also represents an important hazard and lack this kind of risk mitigation strategy.</p><p>The main objective of this work is to study the feasibility to apply a regional scale LEWS, which was originally designed to work over Catalonia (Spain), to run in other regions. To do so we have set up the LEWS to Canton of Bern (Switzerland).</p><p>The LEWS combines susceptibility maps to determine landslide prone areas and in real time high-resolution radar rainfall observations and forecasts. The output is a qualitative warning level map with a resolution of 30 m.</p><p>Susceptibility maps have been derived using a simple fuzzy logic methodology that combines the terrain slope angle, and land use and land cover (LULC) information. The required input parameters have been obtained from regional, pan-European and global datasets.</p><p>Rainfall inputs have been retrieved from both regional weather radar networks, and the OPERA pan-European radar composite. A set of global rainfall intensity-duration data has been used to asses if a rainfall event has the potential of triggering a landslide event.</p><p>The LEWS has been run in the region of Catalonia and Canton of Bern for specific rainfall events that triggered important landslides. Finally, the LEWS performance in Catalonia has been assessed.</p><p>Results in Catalonia show that the LEWS performance strongly depends on the quality of both the susceptibility maps and rainfall data. However, in both regions the LEWS is generally able to issue warnings for most of the analysed landslide events.</p>


Author(s):  
M. Coco ◽  
E. Marchetti ◽  
O. Morandi

AbstractDebris flows constitute a severe natural hazard in Alpine regions. Studies are performed to understand the event predictability and to identify early warning systems and procedures. These are based both on sensors deployed along the channels or on the amplitude of seismic and infrasound waves radiated by the flow and recorded far away. Despite being very promising, infrasound cannot be used to infer the source characteristics due to the lack of a physical model of the infrasound energy radiated by debris flows. Here the simulation of water flow along a simple channel is presented, experiencing the fall from a dam, performed within the open source simulation code OpenFOAM. The pressure perturbation within the atmosphere produced by the flow is extracted and the infrasound signature of the events as a function of the flow characteristics is defined. Numerical results suggest that infrasound is radiated immediately downstream of the dam with amplitude and period that scale with dam height and water level. Modeled infrasound waveform is interpreted as being produced mostly by waves at the water free surface developing downstream of the dam. Despite the effect of sediments is not considered in this first study and will be implemented in future investigations, numerical results obtained with this simple model are in general agreement with experimental results obtained from array analysis of infrasound data recorded at Illgraben, Switzerland. Results highlight how numerical modeling can provide critical information to define a source mechanism of infrasound energy radiation by debris-flow, that is required also to improve early warning systems.


2013 ◽  
Vol 17 (10) ◽  
pp. 4095-4107 ◽  
Author(s):  
M. N. Papa ◽  
V. Medina ◽  
F. Ciervo ◽  
A. Bateman

Abstract. Real-time assessment of debris-flow hazard is fundamental for developing warning systems that can mitigate risk. A convenient method to assess the possible occurrence of a debris flow is to compare measured and forecasted rainfalls to critical rainfall threshold (CRT) curves. Empirical derivation of the CRT from the analysis of past events' rainfall characteristics is not possible when the database of observed debris flows is poor or when the environment changes with time. For debris flows and mud flows triggered by shallow landslides or debris avalanches, the above limitations may be overcome through the methodology presented. In this work the CRT curves are derived from mathematical and numerical simulations, based on the infinite-slope stability model in which slope instability is governed by the increase in groundwater pressure due to rainfall. The effect of rainfall infiltration on landside occurrence is modelled through a reduced form of the Richards equation. The range of rainfall durations for which the method can be correctly employed is investigated and an equation is derived for the lower limit of the range. A large number of calculations are performed combining different values of rainfall characteristics (intensity and duration of event rainfall and intensity of antecedent rainfall). For each combination of rainfall characteristics, the percentage of the basin that is unstable is computed. The obtained database is opportunely elaborated to derive CRT curves. The methodology is implemented and tested in a small basin of the Amalfi Coast (South Italy). The comparison among the obtained CRT curves and the observed rainfall amounts, in a playback period, gives a good agreement. Simulations are performed with different degree of detail in the soil parameters characterization. The comparison shows that the lack of knowledge about the spatial variability of the parameters may greatly affect the results. This problem is partially mitigated by the use of a Monte Carlo approach.


2018 ◽  
Vol 18 (5) ◽  
pp. 1395-1409 ◽  
Author(s):  
Hua-Li Pan ◽  
Yuan-Jun Jiang ◽  
Jun Wang ◽  
Guo-Qiang Ou

Abstract. Debris flows are natural disasters that frequently occur in mountainous areas, usually accompanied by serious loss of lives and properties. One of the most commonly used approaches to mitigate the risk associated with debris flows is the implementation of early warning systems based on well-calibrated rainfall thresholds. However, many mountainous areas have little data regarding rainfall and hazards, especially in debris-flow-forming regions. Therefore, the traditional statistical analysis method that determines the empirical relationship between rainstorms and debris flow events cannot be effectively used to calculate reliable rainfall thresholds in these areas. After the severe Wenchuan earthquake, there were plenty of deposits deposited in the gullies, which resulted in several debris flow events. The triggering rainfall threshold has decreased obviously. To get a reliable and accurate rainfall threshold and improve the accuracy of debris flow early warning, this paper developed a quantitative method, which is suitable for debris flow triggering mechanisms in meizoseismal areas, to identify rainfall threshold for debris flow early warning in areas with a scarcity of data based on the initiation mechanism of hydraulic-driven debris flow. First, we studied the characteristics of the study area, including meteorology, hydrology, topography and physical characteristics of the loose solid materials. Then, the rainfall threshold was calculated by the initiation mechanism of the hydraulic debris flow. The comparison with other models and with alternate configurations demonstrates that the proposed rainfall threshold curve is a function of the antecedent precipitation index (API) and 1 h rainfall. To test the proposed method, we selected the Guojuanyan gully, a typical debris flow valley that during the 2008–2013 period experienced several debris flow events, located in the meizoseismal areas of the Wenchuan earthquake, as a case study. The comparison with other threshold models and configurations shows that the selected approach is the most promising starting point for further studies on debris flow early warning systems in areas with a scarcity of data.


2018 ◽  
Vol 22 (6) ◽  
pp. 3493-3513 ◽  
Author(s):  
Karin Mostbauer ◽  
Roland Kaitna ◽  
David Prenner ◽  
Markus Hrachowitz

Abstract. Debris flows represent frequent hazards in mountain regions. Though significant effort has been made to predict such events, the trigger conditions as well as the hydrologic disposition of a watershed at the time of debris flow occurrence are not well understood. Traditional intensity-duration threshold techniques to establish trigger conditions generally do not account for distinct influences of rainfall, snowmelt, and antecedent moisture. To improve our knowledge on the connection between debris flow initiation and the hydrologic system at a regional scale, this study explores the use of a semi-distributed conceptual rainfall–runoff model, linking different system variables such as soil moisture, snowmelt, or runoff with documented debris flow events in the inner Pitztal watershed, Austria. The model was run on a daily basis between 1953 and 2012. Analysing a range of modelled system state and flux variables at days on which debris flows occurred, three distinct dominant trigger mechanisms could be clearly identified. While the results suggest that for 68 % (17 out of 25) of the observed debris flow events during the study period high-intensity rainfall was the dominant trigger, snowmelt was identified as the dominant trigger for 24 % (6 out of 25) of the observed debris flow events. In addition, 8 % (2 out of 25) of the debris flow events could be attributed to the combined effects of low-intensity, long-lasting rainfall and transient storage of this water, causing elevated antecedent soil moisture conditions. The results also suggest a relatively clear temporal separation between the distinct trigger mechanisms, with high-intensity rainfall as a trigger being limited to mid- and late summer. The dominant trigger in late spring/early summer is snowmelt. Based on the discrimination between different modelled system states and fluxes and, more specifically, their temporally varying importance relative to each other, this exploratory study demonstrates that already the use of a relatively simple hydrological model can prove useful to gain some more insight into the importance of distinct debris flow trigger mechanisms. This highlights in particular the relevance of snowmelt contributions and the switch between mechanisms during early to mid-summer in snow-dominated systems.


2021 ◽  
Author(s):  
Luca Crescenzo ◽  
Gaetano Pecoraro ◽  
Michele Calvello ◽  
Richard Guthrie

<p>Debris flows and debris avalanches are rapid to extremely rapid landslides that tend to travel considerable distances from their source areas. Interaction between debris flows and elements at risk along their travel path may result in potentially significant destructive consequences. One of the critical challenges to overcome with respect to debris flow risk is, therefore, the credible prediction of their size, travel path, runout distance, and depths of erosion and deposition. To these purposes, at slope or catchment scale, sophisticated physically-based models, appropriately considering several factors and phenomena controlling the slope failure mechanisms, may be used. These models, however, are computationally costly and time consuming, and that significantly hinders their applicability at regional scale. Indeed, at regional scale, debris flows hazard assessment is usually carried out by means of qualitative approaches relying on field surveys, geomorphological knowledge, geometric features, and expert judgement.</p><p>In this study, a quantitative modelling approach based on cellular automata methods, wherein individual cells move across a digital elevation model (DEM) landscape following behavioral rules defined probabilistically, is proposed and tested. The adopted model, called LABS, is able to estimate erosion and deposition soil volumes along a debris flow path by deploying at the source areas autonomous subroutines, called agents, over a 5 m spatial resolution DEM, which provides the basic information to each agent in each time-step. Rules for scour and deposition are based on mass balance considerations and independent probability distributions defined as a function of slope DEM-derived values and a series of model input parameters. The probabilistic rules defined in the model are based on data gathered for debris flows and debris avalanches that mainly occurred in western Canada. This study mainly addresses the applicability and the reliability of this modelling approach to areas in southern Italy, in Campania region, historically affected by debris flows in pyroclastic soils. To this aim, information on inventoried debris flows is used in different study areas to evaluate the effect on the predictions of the model input parameter values, as well as of different native DEM resolutions.</p>


2015 ◽  
Vol 42 (1) ◽  
Author(s):  
Klaus Schraml ◽  
Markus Oismüller ◽  
Markus Stoffel ◽  
Johannes Hübl ◽  
Roland Kaitna

Abstract Debris-flows are infrequent geomorphic phenomena that shape steep valleys and can repre-sent a severe hazard for human settlements and infrastructure. In this study, a debris-flow event chro-nology has been derived at the regional scale within the Gesäuse National Park (Styria, Austria) using dendrogeomorphic techniques. Sediment sources and deposition areas were mapped by combined field investigation and aerial photography using an Unmanned Aerial Vehicle (UAV). Through the analysis of 384 trees, a total of 47 debris-flows occurring in 19 years between AD 1903 and 2008 were identified in five adjacent gullies. Our results highlight the local variability of debris-flow activi-ty as a result of local thunderstorms and the variable availability of sediment sources.


Sign in / Sign up

Export Citation Format

Share Document