scholarly journals Projected changes to extreme freezing precipitation and design ice loads over North America based on a large ensemble of Canadian regional climate model simulations

2019 ◽  
Vol 19 (4) ◽  
pp. 857-872 ◽  
Author(s):  
Dae Il Jeong ◽  
Alex J. Cannon ◽  
Xuebin Zhang

Abstract. Atmospheric ice accretion caused by freezing precipitation (FP) can lead to severe damage and the failure of buildings and infrastructure. This study investigates projected changes to extreme ice loads – those used to design infrastructure over North America (NA) – for future periods of specified global mean temperature change (GMTC), relative to the recent 1986–2016 period, using a large 50-member initial-condition ensemble of the CanRCM4 regional climate model, driven by CanESM2 under the RCP8.5 scenario. The analysis is based on 3-hourly ice accretions on horizontal, vertical and radial surfaces calculated based on FP diagnosed by the offline Bourgouin algorithm and wind speed during FP. The CanRCM4 ensemble projects an increase in future design ice loads for most of northern NA and decreases for most of southern NA and some northeastern coastal regions. These changes are mainly caused by regional increases in future upper-level and surface temperatures associated with global warming. Projected changes in design ice thickness are also affected by changes in future precipitation intensity and surface wind speed. Changes in upper-level and surface temperature conditions for FP occurrence in CanRCM4 are in broad agreement with those from nine global climate models but display regional differences under the same level of global warming, indicating that a larger multi-model, multi-scenario ensemble may be needed to better account for additional sources of structural and scenario uncertainty. Increases in ice accretion for latitudes higher than 40∘ N are substantial and would have clear implications for future building and infrastructure design.

2018 ◽  
Author(s):  
Dae Il Jeong ◽  
Alex J. Cannon ◽  
Xuebin Zhang

Abstract. Atmospheric ice accretion caused by freezing precipitation (FP) can lead to severe damage and failure of buildings and infrastructure. This study investigates projected changes to extreme ice loads – those used to design infrastructure over North America (NA) – for future periods of specified global mean temperature change (GMTC), relative to a recent 1986–2016 period, using a large 50 member initial condition ensemble of the CanRCM4 regional climate model driven by CanESM2 under the RCP8.5 scenario. The analysis is based on three-hourly ice accretions on horizontal, vertical, and radial surfaces calculated based on FP diagnosed by the offline Bourgouin algorithm as well as wind speed during FP. The CanRCM4 ensemble projects an increase in future design ice loads for most of northern NA and decreases for most of southern NA and some northeastern coastal regions. These changes are mainly caused by regional increases in future upper level and surface temperatures associated with global warming. Projected changes in design ice thickness are also affected by changes in future precipitation intensity and surface wind speed. Changes in upper level and surface temperature conditions for FP occurrence in CanRCM4 are in broad agreement with those from nine global climate models, but display regional differences under the same level of global warming, indicating that a larger multi-model, multi-scenario ensemble may be needed to better account for additional sources of structural and scenario uncertainty. Increases in ice accretion for latitudes higher than 40° N are substantial and would have clear implications for future building and infrastructure design.


Wind Energy ◽  
2019 ◽  
Vol 23 (3) ◽  
pp. 471-485 ◽  
Author(s):  
Junhong Guo ◽  
Guohe Huang ◽  
Xiuquan Wang ◽  
Ye Xu ◽  
Yongping Li

Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1494
Author(s):  
Bernardo Teufel ◽  
Laxmi Sushama

Fluvial flooding in Canada is often snowmelt-driven, thus occurs mostly in spring, and has caused billions of dollars in damage in the past decade alone. In a warmer climate, increasing rainfall and changing snowmelt rates could lead to significant shifts in flood-generating mechanisms. Here, projected changes to flood-generating mechanisms in terms of the relative contribution of snowmelt and rainfall are assessed across Canada, based on an ensemble of transient climate change simulations performed using a state-of-the-art regional climate model. Changes to flood-generating mechanisms are assessed for both a late 21st century, high warming (i.e., Representative Concentration Pathway 8.5) scenario, and in a 2 °C global warming context. Under 2 °C of global warming, the relative contribution of snowmelt and rainfall to streamflow peaks is projected to remain close to that of the current climate, despite slightly increased rainfall contribution. In contrast, a high warming scenario leads to widespread increases in rainfall contribution and the emergence of hotspots of change in currently snowmelt-dominated regions across Canada. In addition, several regions in southern Canada would be projected to become rainfall dominated. These contrasting projections highlight the importance of climate change mitigation, as remaining below the 2 °C global warming threshold can avoid large changes over most regions, implying a low likelihood that expensive flood adaptation measures would be necessary.


Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 622
Author(s):  
Tugba Ozturk ◽  
F. Sibel Saygili-Araci ◽  
M. Levent Kurnaz

In this study, projected changes in climate extreme indices defined by the Expert Team on Climate Change Detection and Indices were investigated over Middle East and North Africa. Changes in the daily maximum and minimum temperature- and precipitation- based extreme indices were analyzed for the end of the 21st century compared to the reference period 1971–2000 using regional climate model simulations. Regional climate model, RegCM4.4 was used to downscale two different global climate model outputs to 50 km resolution under RCP4.5 and RCP8.5 scenarios. Results generally indicate an intensification of temperature- and precipitation- based extreme indices with increasing radiative forcing. In particular, an increase in annual minimum of daily minimum temperatures is more pronounced over the northern part of Mediterranean Basin and tropics. High increase in warm nights and warm spell duration all over the region with a pronounced increase in tropics are projected for the period of 2071–2100 together with decrease or no change in cold extremes. According to the results, a decrease in total wet-day precipitation and increase in dry spells are expected for the end of the century.


Sign in / Sign up

Export Citation Format

Share Document