scholarly journals Landslide susceptibility mapping on global scale using method of logistic regression

2016 ◽  
Author(s):  
Le Lin ◽  
Qigen Lin ◽  
Ying Wang

Abstract. This paper proposes a statistical model for mapping global landslide susceptibility based on logistic regression. After investigating explanatory factors for landslides in the existing literature, five factors were selected to model landslide susceptibility: relative relief, extreme precipitation, lithology, ground motion and soil moisture. When building model, 70 % of landslide and non-landslide points were randomly selected for logistic regression, and the others were used for model validation. For evaluating the accuracy of predictive models, this paper adopts several criteria including receiver operating characteristic (ROC) curve method. Logistic regression experiments found all five factors to be significant in explaining landslide occurrence on global scale. During the modeling process, percentage correct in confusion matrix of landslide classification was approximately 80 % and the area under the curve (AUC) was nearly 0.87. During the validation process, the above statistics were about 81 % and 0.88, respectively. Such result indicates that the model has strong robustness and stable performance. This model found that at a global scale, soil moisture can be dominant in the occurrence of landslides and topographic factor may be secondary.

2017 ◽  
Vol 17 (8) ◽  
pp. 1411-1424 ◽  
Author(s):  
Le Lin ◽  
Qigen Lin ◽  
Ying Wang

Abstract. This paper proposes a statistical model for mapping global landslide susceptibility based on logistic regression. After investigating explanatory factors for landslides in the existing literature, five factors were selected for model landslide susceptibility: relative relief, extreme precipitation, lithology, ground motion and soil moisture. When building the model, 70 % of landslide and nonlandslide points were randomly selected for logistic regression, and the others were used for model validation. To evaluate the accuracy of predictive models, this paper adopts several criteria including a receiver operating characteristic (ROC) curve method. Logistic regression experiments found all five factors to be significant in explaining landslide occurrence on a global scale. During the modeling process, percentage correct in confusion matrix of landslide classification was approximately 80 % and the area under the curve (AUC) was nearly 0.87. During the validation process, the above statistics were about 81 % and 0.88, respectively. Such a result indicates that the model has strong robustness and stable performance. This model found that at a global scale, soil moisture can be dominant in the occurrence of landslides and topographic factor may be secondary.


2021 ◽  
Vol 13 (7) ◽  
pp. 3803
Author(s):  
Rui-Xuan Tang ◽  
E-Chuan Yan ◽  
Tao Wen ◽  
Xiao-Meng Yin ◽  
Wei Tang

This study validated the robust performances of the recently proposed comprehensive landslide susceptibility index model (CLSI) for landslide susceptibility mapping (LSM) by comparing it to the logistic regression (LR) and the analytical hierarchy process information value (AHPIV) model. Zhushan County in China, with 373 landslides identified, was used as the study area. Eight conditioning factors (lithology, slope structure, slope angle, altitude, distance to river, stream power index, slope length, distance to road) were acquired from digital elevation models (DEMs), field survey, remote sensing imagery, and government documentary data. Results indicate that the CLSI model has the highest accuracy and the best classification ability, although all three models can produce reasonable landslide susceptibility (LS) maps. The robust performance of the CLSI model is due to its weight determination by a back-propagation neural network (BPNN), which successfully captures the nonlinear relationship between landslide occurrence and the conditioning factors.


2019 ◽  
Vol 9 (1) ◽  
pp. 171 ◽  
Author(s):  
Wei Chen ◽  
Zenghui Sun ◽  
Jichang Han

The main aim of this study was to compare the performances of the hybrid approaches of traditional bivariate weights of evidence (WoE) with multivariate logistic regression (WoE-LR) and machine learning-based random forest (WoE-RF) for landslide susceptibility mapping. The performance of the three landslide models was validated with receiver operating characteristic (ROC) curves and area under the curve (AUC). The results showed that the areas under the curve obtained using the WoE, WoE-LR, and WoE-RF methods were 0.720, 0.773, and 0.802 for the training dataset, and were 0.695, 0.763, and 0.782 for the validation dataset, respectively. The results demonstrate the superiority of hybrid models and that the resultant maps would be useful for land use planning in landslide-prone areas.


2018 ◽  
Vol 10 (10) ◽  
pp. 1545 ◽  
Author(s):  
Sung-Jae Park ◽  
Chang-Wook Lee ◽  
Saro Lee ◽  
Moung-Jin Lee

We assessed landslide susceptibility using Chi-square Automatic Interaction Detection (CHAID), exhaustive CHAID, and Quick, Unbiased, and Efficient Statistical Tree (QUEST) decision tree models in Jumunjin-eup, Gangneung-si, Korea. A total of 548 landslides were identified based on interpretation of aerial photographs. Half of the 548 landslides were selected for modeling, and the remaining half were used for verification. We used 20 landslide control factors that were classified into five categories, namely topographic elements, hydrological elements, soil maps, forest maps, and geological maps, to determine landslide susceptibility. The relationships of landslide occurrence with landslide-inducing factors were analyzed using CHAID, exhaustive CHAID, and QUEST models. The three models were then verified using the area under the curve (AUC) method. The results showed that the CHAID model (AUC = 87.1%) was more accurate than the exhaustive CHAID (AUC = 86.9%) and QUEST models (AUC = 82.8%). The verification results showed that the CHAID model had the highest accuracy. There was high susceptibility to landslides in mountainous areas and low susceptibility in coastal areas. Analyzing the characteristics of the landslide control factors in advance will enable us to obtain more accurate results.


Author(s):  
Matthew M. Crawford ◽  
Jason M. Dortch ◽  
Hudson J. Koch ◽  
Ashton A. Killen ◽  
Junfeng Zhu ◽  
...  

High-resolution LiDAR-derived datasets from a 1.5-m digital elevation model and a detailed landslide inventory (N ≥ 1,000) for Magoffin County, Kentucky, USA, were used to develop a combined machine-learning and statistical approach to improve geomorphic-based landslide-susceptibility mapping.An initial dataset of 36 variables was compiled to investigate the connection between slope morphology and landslide occurrence. Bagged trees, a machine-learning random-forest classifier, was used to evaluate the geomorphic variables, and 12 were identified as important: standard deviation of plan curvature, standard deviation of elevation, sum of plan curvature, minimum slope, mean plan curvature, range of elevation, sum of roughness, mean curvature, sum of curvature, mean roughness, minimum curvature, and standard deviation of curvature. These variables were further evaluated using logistic regression to determine the probability of landslide occurrence and then used to create a landslide-susceptibility map.The performance of the logistic-regression model was evaluated by the receiver operating characteristic curve, area under the curve, which was 0.83. Standard deviations from the probability mean were used to set landslide-susceptibility classifications: low (0–0.10), low–moderate (0.11–0.27), moderate (0.28–0.44), moderate–high (0.45–0.7), and high (0.7–1.0). Logistic-regression results were validated by using a separate landslide inventory for the neighboring Prestonsburg 7.5-minute quadrangle, and running the same regression function. Results indicate that 74.9 percent of the landslide deposits were identified as having moderate, moderate–high, or high landslide susceptibility. Combining inventory mapping with statistical modelling identified important geomorphic variables and produced a useful approach to landslide-susceptibility mapping.Thematic collection: This article is part of the Digitization and Digitalization in engineering geology and hydrogeology collection available at: https://www.lyellcollection.org/cc/digitization-and-digitalization-in-engineering-geology-and-hydrogeology


Author(s):  
Benita Nathania ◽  
Fusanori Muira

Landslide is one of the natural hazards that often initiates by the interaction between environmental factors and triggering factor. The identi?cation of areas where landslides are likely to occur is important for the reduction of potential damage. This study utilizes remote sensing data and Geographic Information System (GIS) to identify areas where landslides are likely to occur and generates landslide susceptibility map based on logistic regression model. The study area is located in Hofu city, Yamaguchi prefecture, Japan. The data that were used in this study are satellite imagery from ALOS AVNIR-2, elevation and geology data from GSI, Rainfall data from AMEDAS, and landslide inventory map provided from Ministry of Land, Infrastructure, Transportation and Tourism. The result from this study revealed that elevation from > 50 to < 350 m, slope angle from> 5° to < 50°, slope direction of north and northeast, land cover of agriculture, urban, bare soil, and forest, and lithology of graniodorite, fan deposits, and middle terrace are favorable for landslide occurrence. The landslide susceptiility map showed that 98% of the result calculations of logistic regression are similar to the historical data of landslide event which is among 911 landslide points, 899 points were existed in high and very high susceptibility areas.


2018 ◽  
Vol 7 (11) ◽  
pp. 438 ◽  
Author(s):  
Xiaohui Sun ◽  
Jianping Chen ◽  
Yiding Bao ◽  
Xudong Han ◽  
Jiewei Zhan ◽  
...  

The objective of this study was to identify the areas that are most susceptible to landslide occurrence, and to find the key factors associated with landslides along Jinsha River and its tributaries close to Derong and Deqin County. Thirteen influencing factors, including (a) lithology, (b) slope angle, (c) slope aspect, (d) TWI, (e) curvature, (f) SPI, (g) STI, (h) topographic relief, (i) rainfall, (j) vegetation, (k) NDVI, (l) distance-to-river, (m) and distance-to-fault, were selected as the landslide conditioning factors in landslide susceptibility mapping. These factors were mainly obtained from the field survey, digital elevation model (DEM), and Landsat 4–5 imagery using ArcGIS software. A total of 40 landslides were identified in the study area from field survey and aerial photos’ interpretation. First, the frequency ratio (FR) method was used to clarify the relationship between the landslide occurrence and the influencing factors. Then, the principal component analysis (PCA) was used to eliminate multiple collinearities between the 13 influencing factors and to reduce the dimension of the influencing factors. Subsequently, the factors that were reselected using the PCA were introduced into the logistic regression analysis to produce the landslide susceptibility map. Finally, the receiver operating characteristic (ROC) curve was used to evaluate the accuracy of the logistic regression analysis model. The landslide susceptibility map was divided into the following five classes: very low, low, moderate, high, and very high. The results showed that the ratios of the areas of the five susceptibility classes were 23.14%, 22.49%, 18.00%, 19.08%, and 17.28%, respectively. And the prediction accuracy of the model was 83.4%. The results were also compared with the FR method (79.9%) and the AHP method (76.9%), which meant that the susceptibility model was reasonable. Finally, the key factors of the landslide occurrence were determined based on the above results. Consequently, this study could serve as an effective guide for further land use planning and for the implementation of development.


2020 ◽  
Vol 26 (2) ◽  
pp. 185-200
Author(s):  
Said Benchelha ◽  
Hasnaa Chennaoui Aoudjehane ◽  
Mustapha Hakdaoui ◽  
Rachid El Hamdouni ◽  
Hamou Mansouri ◽  
...  

ABSTRACT Landslide susceptibility indices were calculated and landslide susceptibility maps were generated for the Oudka, Morocco, study area using a geographic information system. The spatial database included current landslide location, topography, soil, hydrology, and lithology, and the eight factors related to landslides (elevation, slope, aspect, distance to streams, distance to roads, distance to faults, lithology, and Normalized Difference Vegetation Index [NDVI]) were calculated or extracted. Logistic regression (LR), multivariate adaptive regression spline (MARSpline), and Artificial Neural Networks (ANN) were the methods used in this study to generate landslide susceptibility indices. Before the calculation, the study area was randomly divided into two parts, the first for the establishment of the model and the second for its validation. The results of the landslide susceptibility analysis were verified using success and prediction rates. The MARSpline model gave a higher success rate (AUC (Area Under The Curve) = 0.963) and prediction rate (AUC = 0.951) than the LR model (AUC = 0.918 and AUC = 0.901) and the ANN model (AUC = 0.886 and AUC = 0.877). These results indicate that the MARSpline model is the best model for determining landslide susceptibility in the study area.


Sign in / Sign up

Export Citation Format

Share Document