Hydro-meteorological thresholds based on synthetic dataset for improved prediction of rainfall-induced shallow landslides.

Author(s):  
Pasquale Marino ◽  
Roberto Greco ◽  
David James Peres ◽  
Thom A. Bogaard

<p>Prediction of rainfall-induced landslides is often entrusted to the definition of empirical thresholds (usually expressed in terms of rainfall intensity and duration), linking the precipitation to the triggering of landslides. However, rainfall intensity-duration thresholds do not exploit the knowledge of the hydrological processes developing in the slope, so they tend to generate false and missed alarms. Rainfall-induced shallow landslides usually occur in initially unsaturated soil covers following an increase of pore water pressure, due to the increase of soil moisture, caused by large and persistent rainfall. Clearly, it should be possible to use soil moisture for landslide prediction. Recently, Bogaard & Greco (2018) proposed the cause-trigger conceptual framework to develop hydro-meteorological thresholds that combine the antecedent causal factors and the actual trigger connected with landslide initiation. In fact, in some regions where rainfall-induced shallow landslides are particularly dangerous and pose a serious risk to people and infrastructures, the antecedent saturation is the predisposing factor, while the actual landslide triggering is associated with the hydrologic response to the recent and incoming precipitation. In fact, numerous studies already tried to introduce, directly or with models, the effects of antecedent soil moisture content in the empirical thresholds for improving landslide forecasting. Soil moisture can be measured locally, by a range of on-site measurement techniques, or remotely, from satellites or airborne. On-site measurements have proved promising in improving the performance of thresholds for landslide early warning. On-site data are accurate but sparse, so there is an increasing interest on the possible use of remotely sensed data. And in fact, recent research has shown that they can provide useful information for landslide prediction at regional scale, despite their coarse resolution and inherent uncertainty.</p><p>However, while remote sensing techniques provide near-surface (5cm depth) soil moisture estimate, the depth involved in shallow landslide is typically 1-2m below the surface. This depth, overlapping with the root penetration zone, is influenced by antecedent precipitation, soil texture, vegetation and, so, it is very difficult to find a clear relationship with near-surface soil moisture. Many studies have been conducted to provide root-zone soil moisture through physically-based approaches and data driven methods, data assimilation schemes, and satellite information.</p><p>In this study, the question if soil moisture information derived from current or future satellite products can improve landslide hazard prediction, and to what extent, is investigated. Hereto, real-world landslide and hydrology information, from two sites of Southern Italy characterized by frequent shallow landslides (Peloritani mountains, in Sicily, and Partenio mountains, in Campania), is analyzed. To get datasets long enough to carry out statistical analyses, synthetic time series of rainfall and soil cover response have been generated, with the application of a stochastic rainfall model and a physically based infiltration model, for both the sites. Near-surface and root-zone soil moisture have been tested, accounting also for effects of uncertainty and of coarse spatial and temporal resolution of measurements. The obtained results show that, in all cases, soil moisture information allows building hydro-meteorological thresholds for landslide prediction, significantly outperforming the currently adopted purely meteorological thresholds.</p><p> </p><p> </p>

Author(s):  
Maurizio Lazzari ◽  
Marco Piccarreta ◽  
Salvatore Manfreda

Abstract. Rainfall-triggered shallow landslides have caused losses of human life and millions of euros in damage to property in all parts of the world. The need to prevent such phenomena combined with the difficulty to describe the geo-physical processes over large scales led to the adoption of empirical rainfall thresholds derived from the observed relationship between rainfall intensity/duration and landslide occurrence. These thresholds are generally obtained neglecting the role of the antecedent moisture conditions that should be taken into consideration. In the present manuscript, we explored the role of antecedent soil moisture on the critical rainfall intensity–duration thresholds highlighting its critical impact. Therefore, traditional approaches that neglect such parameter may have a limited value in the early-warning systems. This study was carried out using a record of 326 landslides occurred in the last 18 years in the Basilicata region (southern Italy). Besides the ordinary data (i.e. rainstorm intensity and duration), we also derived the antecedent moisture conditions using a parsimonious hydrological model.


2015 ◽  
Vol 19 (12) ◽  
pp. 4831-4844 ◽  
Author(s):  
C. Draper ◽  
R. Reichle

Abstract. A 9 year record of Advanced Microwave Scanning Radiometer – Earth Observing System (AMSR-E) soil moisture retrievals are assimilated into the Catchment land surface model at four locations in the US. The assimilation is evaluated using the unbiased mean square error (ubMSE) relative to watershed-scale in situ observations, with the ubMSE separated into contributions from the subseasonal (SMshort), mean seasonal (SMseas), and inter-annual (SMlong) soil moisture dynamics. For near-surface soil moisture, the average ubMSE for Catchment without assimilation was (1.8 × 10−3 m3 m−3)2, of which 19 % was in SMlong, 26 % in SMseas, and 55 % in SMshort. The AMSR-E assimilation significantly reduced the total ubMSE at every site, with an average reduction of 33 %. Of this ubMSE reduction, 37 % occurred in SMlong, 24 % in SMseas, and 38 % in SMshort. For root-zone soil moisture, in situ observations were available at one site only, and the near-surface and root-zone results were very similar at this site. These results suggest that, in addition to the well-reported improvements in SMshort, assimilating a sufficiently long soil moisture data record can also improve the model representation of important long-term events, such as droughts. The improved agreement between the modeled and in situ SMseas is harder to interpret, given that mean seasonal cycle errors are systematic, and systematic errors are not typically targeted by (bias-blind) data assimilation. Finally, the use of 1-year subsets of the AMSR-E and Catchment soil moisture for estimating the observation-bias correction (rescaling) parameters is investigated. It is concluded that when only 1 year of data are available, the associated uncertainty in the rescaling parameters should not greatly reduce the average benefit gained from data assimilation, although locally and in extreme years there is a risk of increased errors.


2007 ◽  
Vol 8 (4) ◽  
pp. 910-921 ◽  
Author(s):  
Nicola Montaldo ◽  
John D. Albertson ◽  
Marco Mancini

Abstract In the presence of uncertain initial conditions and soil hydraulic properties, land surface model (LSM) performance can be significantly improved by the assimilation of periodic observations of certain state variables, such as the near-surface soil moisture (θg), as observed from a remote platform. In this paper the possibility of merging observations and the model optimally for providing robust predictions of root-zone soil moisture (θ2) is demonstrated. An assimilation approach that assimilates θg through the ensemble Kalman filter (EnKF) and provides a physics-based update of θ2 is developed. This approach, as with other common soil moisture assimilation approaches, may fail when a key LSM parameter, for example, the saturated hydraulic conductivity (ks), is estimated poorly. This leads to biased model errors producing a violation of a main assumption (model errors with zero mean) of the EnKF. For overcoming this model bias an innovative assimilation approach is developed that accepts this violation in the early model run times and dynamically calibrates all the components of the ks ensemble as a function of the persistent bias in root-zone soil moisture, allowing one to remove the model bias, restore the fidelity to the EnKF requirements, and reduce the model uncertainty. The robustness of the proposed approach is also examined in sensitivity analyses.


2012 ◽  
Vol 13 (3) ◽  
pp. 1107-1118 ◽  
Author(s):  
Viviana Maggioni ◽  
Rolf H. Reichle ◽  
Emmanouil N. Anagnostou

Abstract This study presents a numerical experiment to assess the impact of satellite rainfall error structure on the efficiency of assimilating near-surface soil moisture observations. Specifically, the study contrasts a multidimensional satellite rainfall error model (SREM2D) to a simpler rainfall error model (CTRL) currently used to generate rainfall ensembles as part of the ensemble-based land data assimilation system developed at the NASA Global Modeling and Assimilation Office. The study is conducted in the Oklahoma region using rainfall data from a NOAA multisatellite global rainfall product [the Climate Prediction Center (CPC) morphing technique (CMORPH)] and the National Weather Service rain gauge–calibrated radar rainfall product [Weather Surveillance Radar-1988 Doppler (WSR-88D)] representing the “uncertain” and “reference” model rainfall forcing, respectively. Soil moisture simulations using the Catchment land surface model (CLSM), obtained by forcing the model with reference rainfall, are randomly perturbed to represent satellite retrieval uncertainty, and assimilated into CLSM as synthetic near-surface soil moisture observations. The assimilation estimates show improved performance metrics, exhibiting higher anomaly correlation coefficients (e.g., ~0.79 and ~0.90 in the SREM2D nonassimilation and assimilation experiments for root zone soil moisture, respectively) and lower root-mean-square errors (e.g., ~0.034 m3 m−3 and ~0.024 m3 m−3 in the SREM2D nonassimilation and assimilation experiments for root zone soil moisture, respectively). The more elaborate rainfall error model in the assimilation system leads to slightly improved assimilation estimates. In particular, the relative enhancement due to SREM2D over CTRL is larger for root zone soil moisture and in wetter rainfall conditions.


2007 ◽  
Vol 8 (2) ◽  
pp. 194-206 ◽  
Author(s):  
Joaquín Muñoz Sabater ◽  
Lionel Jarlan ◽  
Jean-Christophe Calvet ◽  
François Bouyssel ◽  
Patricia De Rosnay

Abstract Root-zone soil moisture constitutes an important variable for hydrological and weather forecast models. Microwave radiometers like the L-band instrument on board the European Space Agency’s (ESA) future Soil Moisture and Ocean Salinity (SMOS) mission are being designed to provide estimates of near-surface soil moisture (0–5 cm). This quantity is physically related to root-zone soil moisture through diffusion processes, and both surface and root-zone soil layers are commonly simulated by land surface models (LSMs). Observed time series of surface soil moisture may be used to analyze the root-zone soil moisture using data assimilation systems. In this paper, various assimilation techniques derived from Kalman filters (KFs) and variational methods (VAR) are implemented and tested. The objective is to correct the modeled root-zone soil moisture deficiencies of the newest version of the Interaction between Soil, Biosphere, and Atmosphere scheme (ISBA) LSM, using the observations of the surface soil moisture of the Surface Monitoring of the Soil Reservoir Experiment (SMOSREX) over a 4-yr period (2001–04). This time period includes contrasting climatic conditions. Among the different algorithms, the ensemble Kalman filter (EnKF) and a simplified one-dimensional variational data assimilation (1DVAR) show the best performances. The lower computational cost of the 1DVAR is an advantage for operational root-zone soil moisture analysis based on remotely sensed surface soil moisture observations at a global scale.


2020 ◽  
Vol 24 (10) ◽  
pp. 4793-4812
Author(s):  
Renaud Hostache ◽  
Dominik Rains ◽  
Kaniska Mallick ◽  
Marco Chini ◽  
Ramona Pelich ◽  
...  

Abstract. The main objective of this study is to investigate how brightness temperature observations from satellite microwave sensors may help to reduce errors and uncertainties in soil moisture and evapotranspiration simulations with a large-scale conceptual hydro-meteorological model. In addition, this study aims to investigate whether such a conceptual modelling framework, relying on parameter calibration, can reach the performance level of more complex physically based models for soil moisture simulations at a large scale. We use the ERA-Interim publicly available forcing data set and couple the Community Microwave Emission Modelling (CMEM) platform radiative transfer model with a hydro-meteorological model to enable, therefore, soil moisture, evapotranspiration and brightness temperature simulations over the Murray–Darling basin in Australia. The hydro-meteorological model is configured using recent developments in the SUPERFLEX framework, which enables tailoring the model structure to the specific needs of the application and to data availability and computational requirements. The hydrological model is first calibrated using only a sample of the Soil Moisture and Ocean Salinity (SMOS) brightness temperature observations (2010–2011). Next, SMOS brightness temperature observations are sequentially assimilated into the coupled SUPERFLEX–CMEM model (2010–2015). For this experiment, a local ensemble transform Kalman filter is used. Our empirical results show that the SUPERFLEX–CMEM modelling chain is capable of predicting soil moisture at a performance level similar to that obtained for the same study area and with a quasi-identical experimental set-up using the Community Land Model (CLM) . This shows that a simple model, when calibrated using globally and freely available Earth observation data, can yield performance levels similar to those of a physically based (uncalibrated) model. The correlation between simulated and in situ observed soil moisture ranges from 0.62 to 0.72 for the surface and root zone soil moisture. The assimilation of SMOS brightness temperature observations into the SUPERFLEX–CMEM modelling chain improves the correlation between predicted and in situ observed surface and root zone soil moisture by 0.03 on average, showing improvements similar to those obtained using the CLM land surface model. Moreover, at the same time the assimilation improves the correlation between predicted and in situ observed monthly evapotranspiration by 0.02 on average.


Author(s):  
Maurizio Lazzari ◽  
Marco Piccarreta ◽  
Ram L. Ray ◽  
Salvatore Manfreda

Rainfall-triggered shallow landslide events have caused losses of human lives and millions of euros in damage to property in all parts of the world. The need to prevent such hazards combined with the difficulty of describing the geomorphological processes over regional scales led to the adoption of empirical rainfall thresholds derived from records of rainfall events triggering landslides. These rainfall intensity thresholds are generally computed, assuming that all events are not influenced by antecedent soil moisture conditions. Nevertheless, it is expected that antecedent soil moisture conditions may provide critical support for the correct definition of the triggering conditions. Therefore, we explored the role of antecedent soil moisture on critical rainfall intensity-duration thresholds to evaluate the possibility of modifying or improving traditional approaches. The study was carried out using 326 landslide events that occurred in the last 18 years in the Basilicata region (southern Italy). Besides the ordinary data (i.e., rainstorm intensity and duration), we also derived the antecedent soil moisture conditions using a parsimonious hydrological model. These data have been used to derive the rainfall intensity thresholds conditional on the antecedent saturation of soil quantifying the impact of such parameters on rainfall thresholds.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8371
Author(s):  
Irina Ontel ◽  
Anisoara Irimescu ◽  
George Boldeanu ◽  
Denis Mihailescu ◽  
Claudiu-Valeriu Angearu ◽  
...  

This paper will assess the sensitivity of soil moisture anomaly (SMA) obtained from the Soil water index (SWI) product Metop ASCAT, to identify drought in Romania. The SWI data were converted from relative values (%) to absolute values (m3 m−3) using the soil porosity method. The conversion results (SM) were validated using soil moisture in situ measurements from ISMN at 5 cm depths (2015–2020). The SMA was computed based on a 10 day SWI product, between 2007 and 2020. The analysis was performed for the depths of 5 cm (near surface), 40 cm (sub surface), and 100 cm (root zone). The standardized precipitation index (SPI), land surface temperature anomaly (LST anomaly), and normalized difference vegetation index anomaly (NDVI anomaly) were computed in order to compare the extent and intensity of drought events. The best correlations between SM and in situ measurements are for the stations located in the Getic Plateau (Bacles (r = 0.797) and Slatina (r = 0.672)), in the Western Plain (Oradea (r = 0.693)), and in the Moldavian Plateau (Iasi (r = 0.608)). The RMSE were between 0.05 and 0.184. Furthermore, the correlations between the SMA and SPI, the LST anomaly, and the NDVI anomaly were significantly registered in the second half of the warm season (July–September). Due to the predominantly agricultural use of the land, the results can be useful for the management of water resources and irrigation in regions frequently affected by drought.


Proceedings ◽  
2019 ◽  
Vol 30 (1) ◽  
pp. 42
Author(s):  
Meisina ◽  
Bordoni ◽  
Lucchelli ◽  
Brocca ◽  
Ciabatta ◽  
...  

Shallow landslides are very dangerous phenomena, widespread all over the world, which could provoke significant damages to buildings, roads, facilities, cultivations and, sometimes, loss of human lives. It is then necessary assessing the most prone zones in a territory which is particularly susceptible to these phenomena and the frequency of the events, according to the return time of the triggering events, which generally correspond to intense and concentrated rainfalls. Susceptibility and hazard of a territory are usually assessed by means of physically-based models, that quantify the hydrological and the mechanical responses of the slopes according to particular rainfall amounts. Whereas, these methodologies could be applied in a reliable way in little catchments, where geotechnical and hydrological features of the materials affected by shallow failures are homogeneous. Moreover, physically-based models require, sometimes, significant computation power, which limit their implementations at regional scale. Data-driven models could overcome both of these limitations, even if they are generally built up taking into only the predisposing factors of shallow instabilities. Thus, they allow usually to estimate the susceptibility of a territory, without considering the frequency of the triggering events. It is then required to consider also triggering factors of shallow landslides to allow these methods to estimate also the hazard. This work presents the preliminary results of the development and the implementation of data-driven model able to estimate the hazard of a territory towards shallow landslides. The model is based on a Genetic Algorithm Model (GAM), which links geomorphological, hydrological, geological and land use predisposing factors to triggering factors of shallow failures. These triggering factors correspond to the soil moisture content and to the rainfall amounts, which are available for entire a study area thanks to satellite measures. The methodological approach is testing in different catchments of 30–40 km2 located in Oltrepò Pavese area (northern Italy), where detailed inventories of shallow landslides occurred during past triggering events and corresponding satellite soil moisture and rainfall maps are available. This work was made in the frame of the ANDROMEDA project, funded by Fondazione Cariplo.


Sign in / Sign up

Export Citation Format

Share Document