Evaluation of Factors Affecting Surface Runoff on Alpine Rangeland in Victoria.

1986 ◽  
Vol 8 (2) ◽  
pp. 97 ◽  
Author(s):  
Rees H van ◽  
RC Boston

A 'portable' rainfall simulator was used on alpine soils on the Bogong High Plains in Victoria, to determine the relationship of surface runoff to soil moisture, rainfall intensity, slope and the percentage of the area lacking vegetation cover (bare ground). A strong inverse relationship (R' = 0.64) existed between total runoff and antecedent soil moisture conditions. The other factors, within the range evaluated in these experiments (bare ground 0 to 33'70, rainfall intensity 37 to 97 mm/hr and slope 6 to 23%) had no significant influence on runoff. Time to runoff initiation was influenced by antecedent soil moisture, slope and rainfall intensity ( ~ ~ ~ 0 . 7 1 ) . It was found that time to runoff decreased as the soils dried, and the slope and rainfall intensity increased. The percentage of bare ground had little influence on the time to runoff initiation. These results show that differences in grassland condition, including large differences in the percentage of bare ground, had little influence on either surface runoff or on the time to runoff initiation. The single most important factor influencing runoff rates was the antecedent moisture content of the soil. This factor is generally outside management control.

Author(s):  
Maurizio Lazzari ◽  
Marco Piccarreta ◽  
Salvatore Manfreda

Abstract. Rainfall-triggered shallow landslides have caused losses of human life and millions of euros in damage to property in all parts of the world. The need to prevent such phenomena combined with the difficulty to describe the geo-physical processes over large scales led to the adoption of empirical rainfall thresholds derived from the observed relationship between rainfall intensity/duration and landslide occurrence. These thresholds are generally obtained neglecting the role of the antecedent moisture conditions that should be taken into consideration. In the present manuscript, we explored the role of antecedent soil moisture on the critical rainfall intensity–duration thresholds highlighting its critical impact. Therefore, traditional approaches that neglect such parameter may have a limited value in the early-warning systems. This study was carried out using a record of 326 landslides occurred in the last 18 years in the Basilicata region (southern Italy). Besides the ordinary data (i.e. rainstorm intensity and duration), we also derived the antecedent moisture conditions using a parsimonious hydrological model.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Lijun Hou ◽  
Yuan Wang ◽  
Fengchun Shen ◽  
Ming Lei ◽  
Xiang Wang ◽  
...  

The self-designed indoor simulated rainfall device was used to rain on five types of pavement structures with 4 types of rainfall intensity (2.5 mm/min, 3.4 mm/min, 4.6 mm/min, and 5.5 mm/min). The effect of rainfall intensity on the surface runoff, the relation between the subgrade soil moisture content changes, and the influence of initial soil water content on rain infiltration rate are studied. The test results show that the surface runoff coefficient of densely asphalted pavement is greater than 90% in drainage pavements and it has little influence on the reducing and hysteresis of the flood peak. The surface runoff coefficient of large-void asphalt pavement (permeable) is less than 40%. Although the large-void asphalt pavement (permeable) can reduce a small amount of surface runoff, it has no obvious effect on the reduction and hysteresis of the flood peak. In semipermeable pavement, with the increasing of the thickness of base (graded gravel), the surface runoff coefficient decreases at different rainfall intensities, parts of the surface runoff are reduced, and the arrival of flood peaks is delayed. In permeable roads, almost no surface runoff occurred. As time continued, the soil moisture content quickly reached a saturated state and presented a stable infiltration situation under the action of gravity and the gradient of soil water suction. As the initial moisture content increases, the initial infiltration rate decreases and the time to reach a stable infiltration rate becomes shorter. The drier the soil, the greater the initial infiltration rate and the higher the soil moisture content after infiltration stabilization. Permeable roads can greatly alleviate the pressure of urban drainage and reduce the risk of storms and floods.


2014 ◽  
Vol 912-914 ◽  
pp. 1986-1994
Author(s):  
Na Na Zhao ◽  
Fu Liang Yu ◽  
Chuan Zhe Li ◽  
Jia Liu ◽  
Hao Wang

Rainfall-runoff process plays an important role in hydrological cycle, and the study on the rainfall-runoff will provide foundation and basis for research on basin hydrology and flood forecasting. In this paper, the surface runoff and subsurface flow of wheat were observed in the laboratory by artificial rainfall, and analyzed the cumulated surface runoff and recession process of subsurface flow by regression analysis. In addition, the factors affected the runoff and response of soil moisture on the runoff coefficients was also discussed. Results showed that the rainfall intensity, soil coverage and slope had important influence on the surface runoff generation, and the surface runoff was observed when the total rainfall amount exceeded 32mm and 13mm for 5°and 15° slope respectively. The cumulative surface runoff could be expressed as a power function, which had higher determination coefficient R2 (0.92~0.999). The subsurface flow was only observed at the ripening period and wheat stubble treatment, and mainly affected by slope angle and initial soil moisture, whereas rainfall intensity showed little impact. The recession curve of subsurface flow can be described as a simple exponential expression or power function, which the determination coefficient was 0.88 and 0.94 by regression analysis, respectively. Moreover, there was an obvious threshold (approximately 30%) between the average initial soil moisture and runoff coefficients, which the runoff increased significantly as above the threshold.


Author(s):  
Maurizio Lazzari ◽  
Marco Piccarreta ◽  
Ram L. Ray ◽  
Salvatore Manfreda

Rainfall-triggered shallow landslide events have caused losses of human lives and millions of euros in damage to property in all parts of the world. The need to prevent such hazards combined with the difficulty of describing the geomorphological processes over regional scales led to the adoption of empirical rainfall thresholds derived from records of rainfall events triggering landslides. These rainfall intensity thresholds are generally computed, assuming that all events are not influenced by antecedent soil moisture conditions. Nevertheless, it is expected that antecedent soil moisture conditions may provide critical support for the correct definition of the triggering conditions. Therefore, we explored the role of antecedent soil moisture on critical rainfall intensity-duration thresholds to evaluate the possibility of modifying or improving traditional approaches. The study was carried out using 326 landslide events that occurred in the last 18 years in the Basilicata region (southern Italy). Besides the ordinary data (i.e., rainstorm intensity and duration), we also derived the antecedent soil moisture conditions using a parsimonious hydrological model. These data have been used to derive the rainfall intensity thresholds conditional on the antecedent saturation of soil quantifying the impact of such parameters on rainfall thresholds.


2020 ◽  
Author(s):  
Pasquale Marino ◽  
Roberto Greco ◽  
David James Peres ◽  
Thom A. Bogaard

<p>Prediction of rainfall-induced landslides is often entrusted to the definition of empirical thresholds (usually expressed in terms of rainfall intensity and duration), linking the precipitation to the triggering of landslides. However, rainfall intensity-duration thresholds do not exploit the knowledge of the hydrological processes developing in the slope, so they tend to generate false and missed alarms. Rainfall-induced shallow landslides usually occur in initially unsaturated soil covers following an increase of pore water pressure, due to the increase of soil moisture, caused by large and persistent rainfall. Clearly, it should be possible to use soil moisture for landslide prediction. Recently, Bogaard & Greco (2018) proposed the cause-trigger conceptual framework to develop hydro-meteorological thresholds that combine the antecedent causal factors and the actual trigger connected with landslide initiation. In fact, in some regions where rainfall-induced shallow landslides are particularly dangerous and pose a serious risk to people and infrastructures, the antecedent saturation is the predisposing factor, while the actual landslide triggering is associated with the hydrologic response to the recent and incoming precipitation. In fact, numerous studies already tried to introduce, directly or with models, the effects of antecedent soil moisture content in the empirical thresholds for improving landslide forecasting. Soil moisture can be measured locally, by a range of on-site measurement techniques, or remotely, from satellites or airborne. On-site measurements have proved promising in improving the performance of thresholds for landslide early warning. On-site data are accurate but sparse, so there is an increasing interest on the possible use of remotely sensed data. And in fact, recent research has shown that they can provide useful information for landslide prediction at regional scale, despite their coarse resolution and inherent uncertainty.</p><p>However, while remote sensing techniques provide near-surface (5cm depth) soil moisture estimate, the depth involved in shallow landslide is typically 1-2m below the surface. This depth, overlapping with the root penetration zone, is influenced by antecedent precipitation, soil texture, vegetation and, so, it is very difficult to find a clear relationship with near-surface soil moisture. Many studies have been conducted to provide root-zone soil moisture through physically-based approaches and data driven methods, data assimilation schemes, and satellite information.</p><p>In this study, the question if soil moisture information derived from current or future satellite products can improve landslide hazard prediction, and to what extent, is investigated. Hereto, real-world landslide and hydrology information, from two sites of Southern Italy characterized by frequent shallow landslides (Peloritani mountains, in Sicily, and Partenio mountains, in Campania), is analyzed. To get datasets long enough to carry out statistical analyses, synthetic time series of rainfall and soil cover response have been generated, with the application of a stochastic rainfall model and a physically based infiltration model, for both the sites. Near-surface and root-zone soil moisture have been tested, accounting also for effects of uncertainty and of coarse spatial and temporal resolution of measurements. The obtained results show that, in all cases, soil moisture information allows building hydro-meteorological thresholds for landslide prediction, significantly outperforming the currently adopted purely meteorological thresholds.</p><p> </p><p> </p>


2009 ◽  
Vol 13 (1) ◽  
pp. 1-16 ◽  
Author(s):  
W. T. Crow ◽  
D. Ryu

Abstract. A number of recent studies have focused on enhancing runoff prediction via the assimilation of remotely-sensed surface soil moisture retrievals into a hydrologic model. The majority of these approaches have viewed the problem from purely a state or parameter estimation perspective in which remotely-sensed soil moisture estimates are assimilated to improve the characterization of pre-storm soil moisture conditions in a hydrologic model, and consequently, its simulation of runoff response to subsequent rainfall. However, recent work has demonstrated that soil moisture retrievals can also be used to filter errors present in satellite-based rainfall accumulation products. This result implies that soil moisture retrievals have potential benefit for characterizing both antecedent moisture conditions (required to estimate sub-surface flow intensities and subsequent surface runoff efficiencies) and storm-scale rainfall totals (required to estimate the total surface runoff volume). In response, this work presents a new sequential data assimilation system that exploits remotely-sensed surface soil moisture retrievals to simultaneously improve estimates of both pre-storm soil moisture conditions and storm-scale rainfall accumulations. Preliminary testing of the system, via a synthetic twin data assimilation experiment based on the Sacramento hydrologic model and data collected from the Model Parameterization Experiment, suggests that the new approach is more efficient at improving stream flow predictions than data assimilation techniques focusing solely on the constraint of antecedent soil moisture conditions.


2017 ◽  
Vol 31 (1) ◽  
pp. 118-127 ◽  
Author(s):  
Tyas Mutiara Basuki ◽  
Rahardyan Nugroho Adi ◽  
Wahyu Wisnu Wijaya

In watershed area, forest has important roles in relation with peak discharge. This  research was conducted to study the impacts of teak forest on peak discharge. On-screen digitizing of IKONOS imagery was done to classify the land cover of the study area. Kejalen and Gagakan catchments covered by old teak forests by 74% and 53% respectively, were chosen as the study area. These catchments are located in Blora Regency. Automatic streamflow recorder was set at the outlet of each catchment and subsequently, peak discharges were examined from the recorded data. During the observation, there were 36 evidences of specific peak discharge. The results showed that a trend of lower peak discharges occurred in Kejalen catchment which has the higher percentage of teak forest area  in compared to Gagakan catchment with lower percentage of teak forest area, except when extreme rainfalls happened. At rainfall of 163 mm/day, specific peak discharge in Kejalen was higher than in Gagakan catchment. Although there is a relationship between specific peak discharge and the percentage of forest cover area, the increase of specific peak discharge is not only affected by forest cover, but also affected by daily rainfall, antecedent soil moisture, and rainfall intensity. Coefficients of determination between specific peak discharge and daily rainfall are 0.64 and 0.61 for Kejalen and Gagakan catchments, respectively.


Irriga ◽  
2015 ◽  
Vol 1 (1) ◽  
pp. 01-13 ◽  
Author(s):  
Valdemir Antonio Rodrigues ◽  
Rodrigo Máximo Sánchez-Román ◽  
José Maria Tarjuelo ◽  
Maria Márcia Pereira Sartori ◽  
Antonio Ruiz Canales

AVALIAÇÃO DO ESCOAMENTO E INTERCEPTAÇÃO DA ÁGUA DAS CHUVAS  VALDEMIR ANTONIO RODRIGUES1; RODRIGO M. SÁNCHEZ-ROMÁN1; JOSÉ MARIA TARJUELO2; MARIA MÁRCIA PEREIRA SARTORI1 E ANTONIO RUIZ CANALES3 (1)Faculdade de Ciências Agronômicas -Universidade Estadual Paulista. UNESP. Botucatu - SP - Brasil.(2)Escuela Superior de Ingeniería Agrícola - Universidad CastillaLa Mancha. UCLM. Albacete. Espanha.(3)Escuela Politécnica Superior de Orihuela - Universidad Miguel Hernández de Elche, Orihuele Espanha.E-mails: [email protected], [email protected], [email protected],[email protected], [email protected],  1 RESUMO Os objetivos foram quantificar o escoamento superficial em diferentes coberturas do solo; analisar a função da vegetação na interceptação da água e controle da erosão; discutir os fatores que alteram a dinâmica da água em parcelas experimentais. O trabalho foi realizado na fazenda São Manuel, no estado de São Paulo (FCA/UNESP), em parcelas de solos com: cobertura vegetal, gramíneas, sem cobertura vegetal e solo impermeabilizado. As simulações de chuvas foram realizadas com quatro tempos de duração. Os tipos de cobertura do solo, intensidade das precipitações, influenciaram no escoamento superficial com maior sedimentação, enquanto que no solo com vegetação ocorreu interceptação pelas copas e menor mobilização de sedimentos. O coeficiente de escoamento superficial foi baixo na presença de vegetação resultando em maior infiltração e melhor regularidade da vazão. Enquanto que a erosão e sedimentos aumentaram nos solos desprotegidos alterando a dinâmica hidrológica em microbacias. Palavras - chave: precipitação, vegetação, erosão do solo, microbacia.  RODRIGUES, V. A.; ROMÁN, R. M. S.; TARJUELO, J. M.; SARTORI, M. M. P;RUIZ CANALES, A.EVALUATION OF RUNOFF AND INTERCEPTION OF RAINFALL  2 ABSTRACT The objectives of this study were to quantify the surface runoff in different soil covers; analyze the effect of the forest on  water interception and on  erosion control; discuss the factors affecting water dynamics in experimental plots. The study was conducted at the São Manuel farm, São Paulo State - FCA/UNESP, in soil plots as follows: with vegetative cover, grasses, without vegetative cover and impervious soil. Rainfall simulations were performed using four time periods. The types of soil covering and  rainfall intensity affected surface runoff causing higher sedimentation, whereas interception by the canopies and lower  sediment mobilization were found  in soil with vegetation.     The coefficient of surface runoff was low in the presence of vegetation, leading to higher infiltration and better flow regularity, whereas  erosion and sediments increased in unprotected soils affecting hydrological dynamics in micro watersheds.  Keywords:  precipitation, vegetation, soil erosion, micro watershed.


1998 ◽  
Vol 25 (4) ◽  
pp. 728-734 ◽  
Author(s):  
J Perrone ◽  
C A Madramootoo

The three antecedent moisture conditions used in the SCS (Soil Conservation Service) curve number method of surface runoff volume prediction have been shown to be inapplicable in humid regions such as the Ottawa - St. Lawrence Lowlands. The antecedent precipitation index is an alternative indicator of soil moisture. Using a hydrologic database, calibration curves were developed to correlate antecedent precipitation index to the SCS curve number. Curve numbers were then input to the AGNPS hydrologic model. When compared to the three antecedent moisture conditions in the SCS curve number method, use of antecedent precipitation index as a soil moisture indicator considerably improved surface runoff volume simulations. However, peak flow was generally overpredicted by the AGNPS model.Key words: AGNPS, antecedent moisture, curve number, peak flow, surface runoff, hydrologic modeling, precipitation.


2008 ◽  
Vol 5 (4) ◽  
pp. 2005-2044 ◽  
Author(s):  
W. T. Crow ◽  
D. Ryu

Abstract. A number of recent studies have focused on enhancing hydrologic prediction via the assimilation of remotely-sensed surface soil moisture retrievals into a hydrologic model. The majority of these approaches have viewed the problem from purely a state or parameter estimation perspective in which remotely-sensed soil moisture estimates are assimilated to improve the characterization of pre-storm soil moisture conditions in a hydrologic model, and consequently, its simulation of runoff response to subsequent rainfall. However, recent work has demonstrated that soil moisture retrievals can also be used to filter errors present in satellite-based rainfall accumulation products. This result implies that soil moisture retrievals have potential benefit for characterizing both antecedent moisture conditions (required to estimate sub-surface flow intensities and subsequent surface runoff efficiencies) and storm-scale rainfall totals (required to estimate the total surface runoff volume). In response, this work presents a new sequential data assimilation system that exploits remotely-sensed surface soil moisture retrievals to simultaneously improve estimates of both pre-storm soil moisture conditions and storm-scale rainfall accumulations. Preliminary testing of the system, via a synthetic twin data assimilation experiment based on the Sacramento hydrologic model and data collected from the Model Parameterization Experiment, suggests that the new approach is more efficient at improving stream flow predictions than data assimilation techniques focusing exclusively on the constraint of antecedent soil moisture conditions.


Sign in / Sign up

Export Citation Format

Share Document