scholarly journals Formation of quasi-power law weak Langmuir turbulence spectrum by harmonic generation

2004 ◽  
Vol 11 (2) ◽  
pp. 267-274
Author(s):  
P. H. Yoon

Abstract. Langmuir wave turbulence generated by a beam-plasma interaction has been studied since the early days of plasma physics research. Despite a long history of investigation on this subject, among the outstanding issues is the generation of harmonic Langmuir waves observed in both laboratory and computer-simulated experiments. However, the phenomenon has not been adequately explained in terms of theory, nor has it been fully characterized by means of numerical simulations. In this paper, a theory of harmonic Langmuir wave generation is put forth and tested against the Vlasov simulation results. It is found that the harmonic Langmuir mode spectra exhibit quasi power-law feature implying a multi-scale structure in both frequency and wave number space spanning several orders of magnitude.

1990 ◽  
Vol 142 ◽  
pp. 467-481
Author(s):  
R. P. Lin

The ISEE-3 spacecraft has provided in situ observations of electron beams, plasma waves, and associated solar type III radio emission in the interplanetary medium near 1 AU. These observations show that electron beams are formed by the faster electrons arriving before the slower ones, following an impulsive injection at the Sun. The resulting bump-on-tail in the reduced one-dimensional distribution function, f(v||), is unstable to the growth of electrostatic electron plasma (Langmuir) waves. The Langmuir waves are observed to be highly impulsive in nature. The onset and temporal variations of the observed plasma waves are in good qualitative agreement with the wave growth expected from the evolution of measured f(v||). However, far higher Langmuir wave intensities are predicted than are detected. In addition, the lack of obvious plateauing of the bump-on-tail suggests that the waves have been removed from resonance with the beam electrons by some wave-wave interaction. Bursts of low frequency, 30–300 Hz (in the spacecraft frame) waves are often found coincident in time with the most intense spikes of the Langmuir waves. These low-frequency waves appear to be long-wavelength ion acoustic waves, with wave number approximately equal to the beam-resonant Langmuir wave number. The observations suggest several possible interpretations: modulational instability, electrostatic decay instability, and electromagnetic decay instability; but none of these are fully consistent with the observations. Microstructures, too short in duration to be resolved by present experiments, have been invoked as an explanation of the phenomenon. Experiments are currently being developed to study these processes using fast wave-particle correlation techniques.


2017 ◽  
Vol 83 (2) ◽  
Author(s):  
C. Krafft ◽  
A. Volokitin

The paper studies the influence of the background plasma density fluctuations on the dynamics of the Langmuir turbulence generated by electron beams, for parameters typical for solar type III beams and plasmas near 1 AU. A self-consistent Hamiltonian model based on the Zakharov and the Newton equations is used, which presents several advantages compared to the Vlasov approach. Beams generating Langmuir turbulence can be accelerated as a result of wave transformation effects or/and decay cascade processes; in both cases, the beam-driven Langmuir waves transfer part of their energy to waves of smaller wavenumbers, which can be reabsorbed later on by beam particles of higher velocities. As a consequence, beams can conserve a large part of their initial kinetic energy while propagating and radiating wave turbulence over long distances in inhomogeneous plasmas. Beam particles can also be accelerated in quasi-homogeneous plasmas due to the second cascade of wave decay, the wave transformation processes being very weak in this case. The net gains and losses of energy of a beam and the wave turbulence it radiates are calculated as a function of the average level of plasma density fluctuations and the beam parameters. The results obtained provide relevant information on the mechanism of energy reabsorption by beams radiating Langmuir turbulence in solar wind plasmas.


2007 ◽  
Vol 14 (5) ◽  
pp. 671-679 ◽  
Author(s):  
T. Umeda

Abstract. Amplitude modulation and packet formation of Langmuir waves are commonly observed during a nonlinear interaction between electron beams and plasmas. In this paper, we briefly review the history of Langmuir wave packets as developed by recent spacecraft observations and computer simulations. New one-dimensional electrostatic Vlasov simulations are performed to study their formation processes. It is found that the formation of Langmuir wave packets involves both an incoherent turbulent process and a coherent nonlinear trapping process. Existence of cold ions does not affect nonlinear processes of the weak-electron-beam instability in which the ion distribution is hardly modified by the excited Langmuir wave packets.


2012 ◽  
Vol 16 (1) ◽  
pp. 29-42 ◽  
Author(s):  
M. Siena ◽  
A. Guadagnini ◽  
M. Riva ◽  
S. P. Neuman

Abstract. We use three methods to identify power-law scaling of multi-scale log air permeability data collected by Tidwell and Wilson on the faces of a laboratory-scale block of Topopah Spring tuff: method of moments (M), Extended Self-Similarity (ESS) and a generalized version thereof (G-ESS). All three methods focus on q-th-order sample structure functions of absolute increments. Most such functions exhibit power-law scaling at best over a limited midrange of experimental separation scales, or lags, which are sometimes difficult to identify unambiguously by means of M. ESS and G-ESS extend this range in a way that renders power-law scaling easier to characterize. Our analysis confirms the superiority of ESS and G-ESS over M in identifying the scaling exponents, ξ(q), of corresponding structure functions of orders q, suggesting further that ESS is more reliable than G-ESS. The exponents vary in a nonlinear fashion with q as is typical of real or apparent multifractals. Our estimates of the Hurst scaling coefficient increase with support scale, implying a reduction in roughness (anti-persistence) of the log permeability field with measurement volume. The finding by Tidwell and Wilson that log permeabilities associated with all tip sizes can be characterized by stationary variogram models, coupled with our findings that log permeability increments associated with the smallest tip size are approximately Gaussian and those associated with all tip sizes scale show nonlinear variations in ξ(q) with q, are consistent with a view of these data as a sample from a truncated version (tfBm) of self-affine fractional Brownian motion (fBm). Since in theory the scaling exponents, ξ(q), of tfBm vary linearly with q we conclude that nonlinear scaling in our case is not an indication of multifractality but an artifact of sampling from tfBm. This allows us to explain theoretically how power-law scaling of our data, as well as of non-Gaussian heavy-tailed signals subordinated to tfBm, are extended by ESS. It further allows us to identify the functional form and estimate all parameters of the corresponding tfBm based on sample structure functions of first and second orders.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 564 ◽  
Author(s):  
Olha Kauss ◽  
Susanne Obert ◽  
Iurii Bogomol ◽  
Thomas Wablat ◽  
Nils Siemensmeyer ◽  
...  

Mo-Si-B alloys are one of the most promising candidates to substitute Ni based superalloys in gas turbines. The optimization of their composition can be achieved more effectively using multi-scale modeling of materials behavior and structural analysis of components for understanding, predicting, and screening properties of new alloys. Nevertheless, this approach is dependent on data on the properties of the single phases in these alloys. The focus of this investigation is Mo3Si, one of the phases in typical Mo-Si-B alloys. The effect of 100 h annealing at 1600 °C on phase stability and microhardness of its three near-stoichiometric compositions—Mo-23Si, Mo-24Si and Mo-25Si (at %)—is reported. While Mo-23Si specimen consist only of Mo3Si before and after annealing, Mo-24Si and Mo-25Si comprise Mo5Si3 and Mo3Si before annealing. The latter is then increased by the annealing. No significant difference in microhardness was detected between the different compositions as well as after annealing. The creep properties of Mo3Si are described at 1093 °C and 1300 °C at varying stress levels as well as at 300 MPa and temperatures between 1050 °C and 1350 °C. Three constitutive models were used for regression of experimental results—(i) power law with a constant creep exponent, (ii) stress range dependent law, and (iii) power law with a temperature-dependent creep exponent. It is confirmed that Mo3Si has a higher creep resistance than Moss and multi-phase Mo-Si-B alloys, but a lower creep strength as compared to Mo5SiB2.


2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Qiang Yan ◽  
Lianren Wu ◽  
Lanli Yi

Through analyzing the data about the releases, comment, and forwarding of 120,000 microblog messages in a year, this paper finds out that the intervals between information releases and comment follow a power law; besides, the analysis of data in each 24 hours reveals obvious differences between microblogging and website visit, email, instant communication, and the use of mobile phone, reflecting how people use fragments of time via mobile internet technology. The paper points out the significant influence of the user's activity on the intervals of information releases and thus demonstrates a positive correlation between the activity and the power exponent. The paper also points out that user's activity is influenced by social identity in a positive way. The simulation results based on the social identity mechanism fit well with the actual data, which indicates that this mechanism is a reasonable way to explain people's behavior in the mobile Internet.


2009 ◽  
Vol 18 (09) ◽  
pp. 1395-1411 ◽  
Author(s):  
LEONARDO CAMPANELLI

We analyze the generation of seed magnetic fields during de Sitter inflation considering a noninvariant conformal term in the electromagnetic Lagrangian of the form [Formula: see text], where I(ϕ) is a pseudoscalar function of a nontrivial background field ϕ. In particular, we consider a toy model that could be realized owing to the coupling between the photon and either a (tachyonic) massive pseudoscalar field or a massless pseudoscalar field nonminimally coupled to gravity, where I follows a simple power law behavior I(k,η) = g/(-kη)β during inflation, while it is negligibly small subsequently. Here, g is a positive dimensionless constant, k the wave number, η the conformal time, and β a real positive number. We find that only when β = 1 and 0.1 ≲ g ≲ 2 can astrophysically interesting fields be produced as excitation of the vacuum, and that they are maximally helical.


1991 ◽  
Vol 52 (1) ◽  
pp. 116-128 ◽  
Author(s):  
Harvey A. Rose ◽  
D.F. DuBois ◽  
David Russell ◽  
B. Bezzerides

2007 ◽  
Vol 534-536 ◽  
pp. 573-576
Author(s):  
Eugene Olevsky

The directions of further developments in the modeling of sintering are pointed out, including multi-scale modeling of sintering, on-line sintering damage criteria, particle agglomeration, sintering with phase transformations. A true multi-scale approach is applied for the development of a new meso-macro methodology for modeling of sintering. The developed macroscopic level computational framework envelopes the mesoscopic simulators. No closed forms of constitutive relationships are assumed for the parameters of the material. When a time-step of the calculations is finished for one macroscopic element, the mesostructures of the next element are restored from the initial state according to the history of loading. The model framework is able to predict the final dimensions of the sintered specimen on a global scale and identify the granular structure in any localized area for prediction of the material properties.


Sign in / Sign up

Export Citation Format

Share Document