scholarly journals ENSO's non-stationary and non-Gaussian character: the role of climate shifts

2009 ◽  
Vol 16 (4) ◽  
pp. 453-473 ◽  
Author(s):  
J. Boucharel ◽  
B. Dewitte ◽  
B. Garel ◽  
Y. du Penhoat

Abstract. El Niño Southern Oscillation (ENSO) is the dominant mode of climate variability in the Pacific, having socio-economic impacts on surrounding regions. ENSO exhibits significant modulation on decadal to inter-decadal time scales which is related to changes in its characteristics (onset, amplitude, frequency, propagation, and predictability). Some of these characteristics tend to be overlooked in ENSO studies, such as its asymmetry (the number and amplitude of warm and cold events are not equal) and the deviation of its statistics from those of the Gaussian distribution. These properties could be related to the ability of the current generation of coupled models to predict ENSO and its modulation. Here, ENSO's non-Gaussian nature and asymmetry are diagnosed from in situ data and a variety of models (from intermediate complexity models to full-physics coupled general circulation models (CGCMs)) using robust statistical tools initially designed for financial mathematics studies. In particular α-stable laws are used as theoretical background material to measure (and quantify) the non-Gaussian character of ENSO time series and to estimate the skill of ``naïve'' statistical models in producing deviation from Gaussian laws and asymmetry. The former are based on non-stationary processes dominated by abrupt changes in mean state and empirical variance. It is shown that the α-stable character of ENSO may result from the presence of climate shifts in the time series. Also, cool (warm) periods are associated with ENSO statistics having a stronger (weaker) tendency towards Gaussianity and lower (greater) asymmetry. This supports the hypothesis of ENSO being rectified by changes in mean state through nonlinear processes. The relationship between changes in mean state and nonlinearity (skewness) is further investigated both in the Zebiak and Cane (1987)'s model and the models of the Intergovernmental Panel for Climate Change (IPCC). Whereas there is a clear relationship in all models between ENSO asymmetry (as measured by skewness or nonlinear advection) and changes in mean state, they exhibit a variety of behaviour with regard to α-stability. This suggests that the dynamics associated with climate shifts and the occurrence of extreme events involve higher-order statistical moments that cannot be accounted for solely by nonlinear advection.

2014 ◽  
Vol 27 (14) ◽  
pp. 5285-5310 ◽  
Author(s):  
Karl Stein ◽  
Axel Timmermann ◽  
Niklas Schneider ◽  
Fei-Fei Jin ◽  
Malte F. Stuecker

Abstract One of the key characteristics of El Niño–Southern Oscillation (ENSO) is its synchronization to the annual cycle, which manifests in the tendency of ENSO events to peak during boreal winter. Current theory offers two possible mechanisms to account the for ENSO synchronization: frequency locking of ENSO to periodic forcing by the annual cycle, or the effect of the seasonally varying background state of the equatorial Pacific on ENSO’s coupled stability. Using a parametric recharge oscillator (PRO) model of ENSO, the authors test which of these scenarios provides a better explanation of the observed ENSO synchronization. Analytical solutions of the PRO model show that the annual modulation of the growth rate parameter results directly in ENSO’s seasonal variance, amplitude modulation, and 2:1 phase synchronization to the annual cycle. The solutions are shown to be applicable to the long-term behavior of the damped model excited by stochastic noise, which produces synchronization characteristics that agree with the observations and can account for the variety of ENSO synchronization behavior in state-of-the-art coupled general circulation models. The model also predicts spectral peaks at “combination tones” between ENSO and the annual cycle that exist in the observations and many coupled models. In contrast, the nonlinear frequency entrainment scenario predicts the existence of a spectral peak at the biennial frequency corresponding to the observed 2:1 phase synchronization. Such a peak does not exist in the observed ENSO spectrum. Hence, it can be concluded that the seasonal modulation of the coupled stability is responsible for the synchronization of ENSO events to the annual cycle.


2011 ◽  
Vol 24 (22) ◽  
pp. 5935-5950 ◽  
Author(s):  
Elinor R. Martin ◽  
Courtney Schumacher

Abstract A census of 19 coupled and 12 uncoupled model runs from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) shows that all models have the ability to simulate the location and height of the Caribbean low-level jet (CLLJ); however, the observed semiannual cycle of the CLLJ magnitude was a challenge for the models to reproduce. In particular, model means failed to capture the strong July CLLJ peak as a result of the lack of westward and southward expansion of the North Atlantic subtropical high (NASH) between May and July. The NASH was also found to be too strong, particularly during the first 6 months of the year in the coupled model runs, which led to increased meridional sea level pressure gradients across the southern Caribbean and, hence, an overly strong CLLJ. The ability of the models to simulate the correlation between the CLLJ and regional precipitation varied based on season and region. During summer months, the negative correlation between the CLLJ and Caribbean precipitation anomalies was reproduced in the majority of models, with uncoupled models outperforming coupled models. The positive correlation between the CLLJ and the central U.S. precipitation during February was more challenging for the models, with the uncoupled models failing to reproduce a significant relationship. This may be a result of overactive convective parameterizations raining out too much moisture in the Caribbean meaning less is available for transport northward, or due to incorrect moisture fluxes over the Gulf of Mexico. The representation of the CLLJ in general circulation models has important consequences for accurate predictions and projections of future climate in the Caribbean and surrounding regions.


2006 ◽  
Vol 19 (17) ◽  
pp. 4397-4417 ◽  
Author(s):  
N. H. Saji ◽  
S-P. Xie ◽  
T. Yamagata

Abstract The twentieth-century simulations using by 17 coupled ocean–atmosphere general circulation models (CGCMs) submitted to the Intergovernmental Panel on Climate Change’s Fourth Assessment Report (IPCC AR4) are evaluated for their skill in reproducing the observed modes of Indian Ocean (IO) climate variability. Most models successfully capture the IO’s delayed, basinwide warming response a few months after El Niño–Southern Oscillation (ENSO) peaks in the Pacific. ENSO’s oceanic teleconnection into the IO, by coastal waves through the Indonesian archipelago, is poorly simulated in these models, with significant shifts in the turning latitude of radiating Rossby waves. In observations, ENSO forces, by the atmospheric bridge mechanism, strong ocean Rossby waves that induce anomalies of SST, atmospheric convection, and tropical cyclones in a thermocline dome over the southwestern tropical IO. While the southwestern IO thermocline dome is simulated in nearly all of the models, this ocean Rossby wave response to ENSO is present only in a few of the models examined, suggesting difficulties in simulating ENSO’s teleconnection in surface wind. A majority of the models display an equatorial zonal mode of the Bjerknes feedback with spatial structures and seasonality similar to the Indian Ocean dipole (IOD) in observations. This success appears to be due to their skills in simulating the mean state of the equatorial IO. Corroborating the role of the Bjerknes feedback in the IOD, the thermocline depth, SST, precipitation, and zonal wind are mutually positively correlated in these models, as in observations. The IOD–ENSO correlation during boreal fall ranges from −0.43 to 0.74 in the different models, suggesting that ENSO is one, but not the only, trigger for the IOD.


2007 ◽  
Vol 20 (6) ◽  
pp. 1093-1107 ◽  
Author(s):  
Muyin Wang ◽  
James E. Overland ◽  
Vladimir Kattsov ◽  
John E. Walsh ◽  
Xiangdong Zhang ◽  
...  

Abstract There were two major multiyear, Arctic-wide (60°–90°N) warm anomalies (>0.7°C) in land surface air temperature (LSAT) during the twentieth century, between 1920 and 1950 and again at the end of the century after 1979. Reproducing this decadal and longer variability in coupled general circulation models (GCMs) is a critical test for understanding processes in the Arctic climate system and increasing the confidence in the Intergovernmental Panel on Climate Change (IPCC) model projections. This study evaluated 63 realizations generated by 20 coupled GCMs made available for the IPCC Fourth Assessment for their twentieth-century climate in coupled models (20C3M) and corresponding control runs (PIcntrl). Warm anomalies in the Arctic during the last two decades are reproduced by all ensemble members, with considerable variability in amplitude among models. In contrast, only eight models generated warm anomaly amplitude of at least two-thirds of the observed midcentury warm event in at least one realization, but not its timing. The durations of the midcentury warm events in all the models are decadal, while that of the observed was interdecadal. The variance of the control runs in nine models was comparable with the variance in the observations. The random timing of midcentury warm anomalies in 20C3M simulations and the similar variance of the control runs in about half of the models suggest that the observed midcentury warm period is consistent with intrinsic climate variability. Five models were considered to compare somewhat favorably to Arctic observations in both matching the variance of the observed temperature record in their control runs and representing the decadal mean temperature anomaly amplitude in their 20C3M simulations. Seven additional models could be given further consideration. Results support selecting a subset of GCMs when making predictions for future climate by using performance criteria based on comparison with retrospective data.


2015 ◽  
Vol 28 (24) ◽  
pp. 9997-10013 ◽  
Author(s):  
Céline J. W. Bonfils ◽  
Benjamin D. Santer ◽  
Thomas J. Phillips ◽  
Kate Marvel ◽  
L. Ruby Leung ◽  
...  

Abstract El Niño–Southern Oscillation (ENSO) is an important driver of regional hydroclimate variability through far-reaching teleconnections. This study uses simulations performed with coupled general circulation models (CGCMs) to investigate how regional precipitation in the twenty-first century may be affected by changes in both ENSO-driven precipitation variability and slowly evolving mean rainfall. First, a dominant, time-invariant pattern of canonical ENSO variability (cENSO) is identified in observed SST data. Next, the fidelity with which 33 state-of-the-art CGCMs represent the spatial structure and temporal variability of this pattern (as well as its associated precipitation responses) is evaluated in simulations of twentieth-century climate change. Possible changes in both the temporal variability of this pattern and its associated precipitation teleconnections are investigated in twenty-first-century climate projections. Models with better representation of the observed structure of the cENSO pattern produce winter rainfall teleconnection patterns that are in better accord with twentieth-century observations and more stationary during the twenty-first century. Finally, the model-predicted twenty-first-century rainfall response to cENSO is decomposed into the sum of three terms: 1) the twenty-first-century change in the mean state of precipitation, 2) the historical precipitation response to the cENSO pattern, and 3) a future enhancement in the rainfall response to cENSO, which amplifies rainfall extremes. By examining the three terms jointly, this conceptual framework allows the identification of regions likely to experience future rainfall anomalies that are without precedent in the current climate.


2008 ◽  
Vol 21 (1) ◽  
pp. 3-21 ◽  
Author(s):  
Soon-Il An ◽  
Jong-Seong Kug ◽  
Yoo-Geun Ham ◽  
In-Sik Kang

Abstract The multidecadal modulation of the El Niño–Southern Oscillation (ENSO) due to greenhouse warming has been analyzed herein by means of diagnostics of Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) coupled general circulation models (CGCMs) and the eigenanalysis of a simplified version of an intermediate ENSO model. The response of the global-mean troposphere temperature to increasing greenhouse gases is more likely linear, while the amplitude and period of ENSO fluctuates in a multidecadal time scale. The climate system model outputs suggest that the multidecadal modulation of ENSO is related to the delayed response of the subsurface temperature in the tropical Pacific compared to the response time of the sea surface temperature (SST), which would lead a modulation of the vertical temperature gradient. Furthermore, an eigenanalysis considering only two parameters, the changes in the zonal contrast of the mean background SST and the changes in the vertical contrast between the mean surface and subsurface temperatures in the tropical Pacific, exhibits a good agreement with the CGCM outputs in terms of the multidecadal modulations of the ENSO amplitude and period. In particular, the change in the vertical contrast, that is, change in difference between the subsurface temperature and SST, turns out to be more influential on the ENSO modulation than changes in the mean SST itself.


Radiocarbon ◽  
2001 ◽  
Vol 43 (2B) ◽  
pp. 843-855 ◽  
Author(s):  
John M Kalish ◽  
Reidar Nydal ◽  
Kjell H Nedreaas ◽  
George S Burr ◽  
Gro L Eine

Radiocarbon measured in seawater dissolved inorganic carbon (DIC) can be used to investigate ocean circulation, atmosphere/ocean carbon flux, and provide powerful constraints for the fine-tuning of general circulation models (GCMs). Time series of 14C in seawater are derived most frequently from annual bands of hermatypic corals. However, this proxy is unavailable in temperate and polar oceans. Fish otoliths, calcium carbonate auditory, and gravity receptors in the membranous labyrinths of teleost fishes, can act as proxies for 14C in most oceans and at most depths. Arcto-Norwegian cod otoliths are suited to this application due to the well-defined distribution of this species in the Barents Sea, the ability to determine ages of individual Arcto-Norwegian cod with a high level of accuracy, and the availability of archived otoliths collected for fisheries research over the past 60 years. Using measurements of 14C derived from Arcto-Norwegian cod otoliths, we present the first pre- and post-bomb time series (1919–1992) of 14C from polar seas and consider the significance of these data in relation to ocean circulation and atmosphere/ocean flux of 14C. The data provide evidence for a minor Suess effect of only 0.2‰ per year between 1919 and 1950. Bomb 14C was evident in the Barents Sea as early as 1957 and the highest 14C value was measured in an otolith core from a cod with a birth date of 1967. The otolith 14C data display key features common to records of 14C obtained from a Georges Bank mollusc and corals from the tropical and subtropical North Atlantic.


2019 ◽  
Author(s):  
Donald A. Slater ◽  
Denis Felikson ◽  
Fiamma Straneo ◽  
Heiko Goelzer ◽  
Christopher M. Little ◽  
...  

Abstract. Changes in the ocean are expected to be an important determinant of the Greenland Ice Sheet's future sea level contribution. Yet representing these changes in continental-scale ice sheet models remains challenging due to the small scale of the key physics, and limitations in processing understanding. Here we present the ocean forcing strategy for Greenland Ice Sheet models taking part in the Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6), the primary community effort to provide 21st century sea level projections for the Intergovernmental Panel on Climate Change 6th Assessment Report. Beginning from global atmosphere-ocean general circulation models, we describe two complementary approaches to provide ocean boundary conditions for Greenland Ice Sheet models, termed the retreat and submarine melt implementations. The retreat implementation parameterizes glacier retreat as a function of projected submarine melting, is designed to be implementable by all ice sheet models, and results in retreat of around 1 and 15 km by 2100 in RCP2.6 and 8.5 scenarios respectively. The submarine melt implementation provides estimated submarine melting only, leaving the ice sheet model to solve for the resulting calving and glacier retreat, and suggests submarine melt rates will change little under RCP2.6 but will approximately triple by 2100 under RCP8.5. Both implementations have necessarily made use of simplifying assumptions and poorly-constrained parameterisations and as such, further research on submarine melting, calving and fjord-shelf exchange should remain a priority. Nevertheless, the presented framework will allow an ensemble of Greenland Ice Sheet models to be systematically and consistently forced by the ocean for the first time, and should therefore result in a significant improvement in projections of the Greenland ice sheet's contribution to future sea level change.


2019 ◽  
Vol 19 (17) ◽  
pp. 11383-11399
Author(s):  
Jonathan K. P. Shonk ◽  
Teferi D. Demissie ◽  
Thomas Toniazzo

Abstract. Modern coupled general circulation models produce systematic biases in the tropical Atlantic that hamper the reliability of long-range predictions. This study focuses on a common springtime westerly wind bias in the equatorial Atlantic in seasonal hindcasts from two coupled models – ECMWF System 4 and EC-Earth v2.3 – and in hindcasts also based on System 4, but with prescribed sea-surface temperatures. The development of the equatorial westerly bias in early April is marked by a rapid transition from a wintertime easterly, cold tongue bias to a springtime westerly bias regime that displays a marked double intertropical convergence zone (ITCZ). The transition is a seasonal feature of the model climatology (independent of initialisation date) and is associated with a seasonal increase in rainfall where a second branch of the ITCZ is produced south of the Equator. Excess off-equatorial convergence redirects the trade winds away from the Equator. Based on arguments of temporal coincidence, the results of our analysis contrast with those from previous work, and alleged causes hereto identified as the likely cause of the equatorial westerly bias in other models must be discarded. Quite in general, we find no evidence of remote influences on the development of the springtime equatorial bias in the Atlantic in the IFS-based models. Limited evidence however is presented that supports the hypothesis of an incorrect representation of the meridional equatorward flow in the marine boundary layer of the southern Atlantic as a contributing factor. Erroneous dynamical constraints on the flow upstream of the Equator may generate convergence and associated rainfall south of the Equator. This directs attention to the representation of the properties of the subtropical boundary layer as a potential source for the double ITCZ bias.


Sign in / Sign up

Export Citation Format

Share Document