scholarly journals Weighted complex networks applied to seismicity: the Itoiz dam (Northern Spain)

2011 ◽  
Vol 18 (4) ◽  
pp. 477-487 ◽  
Author(s):  
A. Jiménez ◽  
F. Luzón

Abstract. On 18 September 2004, an earthquake of magnitude mbLg = 4.6 was recorded near the Itoiz dam (Northern Spain). It occurred after the first impoundment of the reservoir and has been catalogued by some authors as induced seismicity. We analyzed the seismicity in the region as weighted complex networks and tried to differentiate this event from others that occurred nearby. We calculated the main topological features of the networks formed by the seismic clusters and compared them. We compared the results with a series of simulations, and showed that the clusters were better modelled with the Epidemic-Type Aftershock Sequence (ETAS) model than with random models. We found that the properties of the different clusters are grouped according to the magnitude of the main shocks and the number of events in each cluster, and that no distinct feature could be obtained for the 18 September 2004 series. We found that the nodes with the highest strength are the most important in the networks' traffic, and are associated with the events with the highest magnitude within the clusters.

2017 ◽  
Vol 33 (4) ◽  
pp. 1279-1299 ◽  
Author(s):  
Edward Field ◽  
Keith Porter ◽  
Kevin Milner

We present a prototype operational loss model based on UCERF3-ETAS, which is the third Uniform California Earthquake Rupture Forecast with an Epidemic Type Aftershock Sequence (ETAS) component. As such, UCERF3-ETAS represents the first earthquake forecast to relax fault segmentation assumptions and to include multi-fault ruptures, elastic-rebound, and spatiotemporal clustering, all of which seem important for generating realistic and useful aftershock statistics. UCERF3-ETAS is nevertheless an approximation of the system, however, so usefulness will vary and potential value needs to be ascertained in the context of each application. We examine this question with respect to statewide loss estimates, exemplifying how risk can be elevated by orders of magnitude due to triggered events following various scenario earthquakes. Two important considerations are the probability gains, relative to loss likelihoods in the absence of main shocks, and the rapid decay of gains with time. Significant uncertainties and model limitations remain, so we hope this paper will inspire similar analyses with respect to other risk metrics to help ascertain whether operationalization of UCERF3-ETAS would be worth the considerable resources required.


2001 ◽  
Vol 38 (A) ◽  
pp. 232-242 ◽  
Author(s):  
Masajiro Imoto

A point process procedure can be used to study reservoir-induced seismicity (RIS), in which the intensity function representing earthquake hazard is a combination of three terms: a constant background term, an ETAS (epidemic-type aftershock sequence) term for aftershocks, and a time function derived from observation of water levels of a reservoir. This paper presents the results of such a study of the seismicity in the vicinity of the Tarbela reservoir in Pakistan. Making allowance for changes in detection capability and the background seismicity related to tectonic activity, earthquakes of magnitude ≥ 2.0, occurring between May 1978 and January 1982 and whose epicentres were within 100 km of the reservoir, were used in this analysis. Several different intensities were compared via their Akaike information criterion (AIC) values relative to those of a Poisson process. The results demonstrate that the seismicity within 20 km of the reservoir correlates with water levels of the reservoir, namely, active periods occur about 250 days after the appearance of low water levels. This suggests that unloading the reservoir activates the seismicity beneath it. Seasonal variations of the seismicity in an area up to 100 km from the reservoir were also found, but these could not be adequately interpreted by an appropriate RIS mechanism.


Author(s):  
Hideo Aochi ◽  
Julie Maury ◽  
Thomas Le Guenan

Abstract The seismicity evolution in Oklahoma between 2010 and 2018 is analyzed systematically using an epidemic-type aftershock sequence model. To retrieve the nonstationary seismicity component, we systematically use a moving window of 200 events, each within a radius of 20 km at grid points spaced every 0.2°. Fifty-three areas in total are selected for our analysis. The evolution of the background seismicity rate μ is successfully retrieved toward its peak at the end of 2014 and during 2015, whereas the triggering parameter K is stable, slightly decreasing when the seismicity is activated. Consequently, the ratio of μ to the observed seismicity rate is not stationary. The acceleration of μ can be fit with an exponential equation relating μ to the normalized injected volume. After the peak, the attenuation phase can be fit with an exponential equation with time since peak as the independent variable. As a result, the evolution of induced seismicity can be followed statistically after it begins. The turning points, such as activation of the seismicity and timing of the peak, are difficult to identify solely from this statistical analysis and require a subsequent mechanical interpretation.


2011 ◽  
Vol 18 (6) ◽  
pp. 955-966 ◽  
Author(s):  
M. B. Yıkılmaz ◽  
E. M. Heien ◽  
D. L. Turcotte ◽  
J. B. Rundle ◽  
L. H. Kellogg

Abstract. We generate synthetic catalogs of seismicity in northern California using a composite simulation. The basis of the simulation is the fault based "Virtual California" (VC) earthquake simulator. Back-slip velocities and mean recurrence intervals are specified on model strike-slip faults. A catalog of characteristic earthquakes is generated for a period of 100 000 yr. These earthquakes are predominantly in the range M = 6 to M = 8, but do not follow Gutenberg-Richter (GR) scaling at lower magnitudes. In order to model seismicity on unmapped faults we introduce background seismicity which occurs randomly in time with GR scaling and is spatially associated with the VC model faults. These earthquakes fill in the GR scaling down to M = 4 (the smallest earthquakes modeled). The rate of background seismicity is constrained by the observed rate of occurrence of M > 4 earthquakes in northern California. These earthquakes are then used to drive the BASS (branching aftershock sequence) model of aftershock occurrence. The BASS model is the self-similar limit of the ETAS (epidemic type aftershock sequence) model. Families of aftershocks are generated following each Virtual California and background main shock. In the simulations the rate of occurrence of aftershocks is essentially equal to the rate of occurrence of main shocks in the magnitude range 4 < M < 7. We generate frequency-magnitude and recurrence interval statistics both regionally and fault specific. We compare our modeled rates of seismicity and spatial variability with observations.


2019 ◽  
Vol 109 (6) ◽  
pp. 2356-2366 ◽  
Author(s):  
Ganyu Teng ◽  
Jack W. Baker

Abstract This study is an evaluation of the suitability of several declustering method for induced seismicity and their impacts on hazard analysis of the Oklahoma–Kansas region. We considered the methods proposed by Gardner and Knopoff (1974), Reasenberg (1985), Zaliapin and Ben‐Zion (2013), and the stochastic declustering method (Zhuang et al., 2002) based on the epidemic‐type aftershock sequence (ETAS) model (Ogata, 1988, 1998). The results show that the choice of declustering method has a significant impact on the declustered catalog and the resulting hazard analysis of the Oklahoma–Kansas region. The Gardner and Knopoff method, which is currently implemented in the U.S. Geological Survey one‐year seismic‐hazard forecast for the central and eastern United States, has unexpected features when used for this induced seismicity catalog. It removes 80% of earthquakes and fails to reflect the changes in background rates that have occurred in the past few years. This results in a slight increase in the hazard level from 2016 to 2017, despite a decrease in seismic activities in 2017. The Gardner and Knopoff method also frequently identifies aftershocks with much stronger shaking intensities than their associated mainshocks. These features are mostly due to the window method implemented in the Gardner and Knopoff method. Compared with the Gardner and Knopoff method, the other three methods are able to capture the changing hazard level in the region. However, the ETAS model potentially overestimates the foreshock effect and generates negligible probabilities of large earthquakes being mainshocks. The Reasenberg and Zaliapin and Ben‐Zion methods have similar performance on catalog declustering and hazard analysis. Compared with the ETAS method, these two methods are easier to implement and faster to generate the declustered catalog. The results from this study suggest that both Reasenberg and Zaliapin and Ben‐Zion declustering methods are suitable for declustering and hazard analysis for induced seismicity in the Oklahoma–Kansas region.


2001 ◽  
Vol 38 (A) ◽  
pp. 232-242
Author(s):  
Masajiro Imoto

A point process procedure can be used to study reservoir-induced seismicity (RIS), in which the intensity function representing earthquake hazard is a combination of three terms: a constant background term, an ETAS (epidemic-type aftershock sequence) term for aftershocks, and a time function derived from observation of water levels of a reservoir. This paper presents the results of such a study of the seismicity in the vicinity of the Tarbela reservoir in Pakistan. Making allowance for changes in detection capability and the background seismicity related to tectonic activity, earthquakes of magnitude ≥ 2.0, occurring between May 1978 and January 1982 and whose epicentres were within 100 km of the reservoir, were used in this analysis. Several different intensities were compared via their Akaike information criterion (AIC) values relative to those of a Poisson process. The results demonstrate that the seismicity within 20 km of the reservoir correlates with water levels of the reservoir, namely, active periods occur about 250 days after the appearance of low water levels. This suggests that unloading the reservoir activates the seismicity beneath it. Seasonal variations of the seismicity in an area up to 100 km from the reservoir were also found, but these could not be adequately interpreted by an appropriate RIS mechanism.


Author(s):  
Simone Mancini ◽  
Maximilian Jonas Werner ◽  
Margarita Segou ◽  
Brian Baptie

Abstract The development of robust forecasts of human-induced seismicity is highly desirable to mitigate the effects of disturbing or damaging earthquakes. We assess the performance of a well-established statistical model, the epidemic-type aftershock sequence (ETAS) model, with a catalog of ∼93,000 microearthquakes observed at the Preston New Road (PNR, United Kingdom) unconventional shale gas site during, and after hydraulic fracturing of the PNR-1z and PNR-2 wells. Because ETAS was developed for slower loading rate tectonic seismicity, to account for seismicity caused by pressurized fluid, we also generate three modified ETAS with background rates proportional to injection rates. We find that (1) the standard ETAS captures low seismicity between and after injections but is outperformed by the modified model during high-seismicity periods, and (2) the injection-rate driven ETAS substantially improves when the forecast is calibrated on sleeve-specific pumping data. We finally forecast out-of-sample the PNR-2 seismicity using the average response to injection observed at PNR-1z, achieving better predictive skills than the in-sample standard ETAS. The insights from this study contribute toward producing informative seismicity forecasts for real-time decision making and risk mitigation techniques during unconventional shale gas development.


Author(s):  
Hao Liao ◽  
An Zeng ◽  
Mingyang Zhou ◽  
Rui Mao ◽  
Bing-Hong Wang

Sign in / Sign up

Export Citation Format

Share Document