scholarly journals Tidal forcing, energetics, and mixing near the Yermak Plateau

Ocean Science ◽  
2015 ◽  
Vol 11 (2) ◽  
pp. 287-304 ◽  
Author(s):  
I. Fer ◽  
M. Müller ◽  
A. K. Peterson

Abstract. The Yermak Plateau (YP), located northwest of Svalbard in Fram Strait, is the final passage for the inflow of warm Atlantic Water into the Arctic Ocean. The region is characterized by the largest barotropic tidal velocities in the Arctic Ocean. Internal response to the tidal flow over this topographic feature locally contributes to mixing that removes heat from the Atlantic Water. Here, we investigate the tidal forcing, barotropic-to-baroclinic energy conversion rates, and dissipation rates in the region using observations of oceanic currents, hydrography, and microstructure collected on the southern flanks of the plateau in summer 2007, together with results from a global high-resolution ocean circulation and tide model simulation. The energetics (depth-integrated conversion rates, baroclinic energy fluxes and dissipation rates) show large spatial variability over the plateau and are dominated by the luni-solar diurnal (K1) and the principal lunar semidiurnal (M2) constituents. The volume-integrated conversion rate over the region enclosing the topographic feature is approximately 1 GW and accounts for about 50% of the M2 and approximately all of the K1 conversion in a larger domain covering the entire Fram Strait extended to the North Pole. Despite the substantial energy conversion, internal tides are trapped along the topography, implying large local dissipation rates. An approximate local conversion–dissipation balance is found over shallows and also in the deep part of the sloping flanks. The baroclinic energy radiated away from the upper slope is dissipated over the deeper isobaths. From the microstructure observations, we inferred lower and upper bounds on the total dissipation rate of about 0.5 and 1.1 GW, respectively, where about 0.4–0.6 GW can be attributed to the contribution of hot spots of energetic turbulence. The domain-integrated dissipation from the model is close to the upper bound of the observed dissipation, and implies that almost the entire dissipation in the region can be attributed to the dissipation of baroclinic tidal energy.

2014 ◽  
Vol 11 (5) ◽  
pp. 2245-2287 ◽  
Author(s):  
I. Fer ◽  
M. Müller ◽  
A. K. Peterson

Abstract. The Yermak Plateau, located northwest of Svalbard in Fram Strait, is the final passage for the inflow of warm Atlantic Water into the Arctic Ocean. The region is characterized by the largest barotropic tidal velocities in the Arctic Ocean. Internal waves generated in response to the tidal flow over this topographic feature locally contribute to mixing and remove heat from the Atlantic Water. Here, we investigate the tidal forcing, barotropic-baroclinic energy conversion rates, and dissipation rates in the region using observations of oceanic currents, hydrography and microstructure collected on the southern flanks of the plateau in summer 2007, together with results from a global high resolution ocean circulation and tide model simulation. The energetics (depth-integrated conversion rates, baroclinic energy fluxes and dissipation rates) show large spatial variability over the plateau and are dominated by the K1 and M2 constituents. The volume-integrated conversion rate over the region enclosing the topographic feature is approximately 1 GW and accounts for about 50% of the M2 and approximately all of the K1 conversion in a larger domain covering the entire Fram Strait extended to the North Pole. Despite the substantial energy conversion into internal tides, a negligible fraction propagates out of the YP region, implying large local dissipation rates. An approximate local conversion – dissipation balance is found over shallows and also in the deep part of the sloping flanks. The baroclinic energy radiated away from the upper slope is dissipated over the deeper isobaths. From observations below the surface mixed layer, we infer upper and lower bounds on the total dissipation rate of about 0.5 and 1 GW, where about 0.4 GW can be attributed to the contribution of hot spots. The domain-integrated dissipation from the model is close to the upper bound of the observed dissipation, and implies that almost entire dissipation in the region can be attributed to the dissipation of baroclinic tidal energy.


2000 ◽  
Vol 18 (6) ◽  
pp. 687-705 ◽  
Author(s):  
B. Rudels ◽  
R. Meyer ◽  
E. Fahrbach ◽  
V. V. Ivanov ◽  
S. Østerhus ◽  
...  

Abstract. The water mass distribution in northern Fram Strait and over the Yermak Plateau in summer 1997 is described using CTD data from two cruises in the area. The West Spitsbergen Current was found to split, one part recirculated towards the west, while the other part, on entering the Arctic Ocean separated into two branches. The main inflow of Atlantic Water followed the Svalbard continental slope eastward, while a second, narrower, branch stayed west and north of the Yermak Plateau. The water column above the southeastern flank of the Yermak Plateau was distinctly colder and less saline than the two inflow branches. Immediately west of the outer inflow branch comparatively high temperatures in the Atlantic Layer suggested that a part of the extraordinarily warm Atlantic Water, observed in the boundary current in the Eurasian Basin in the early 1990s, was now returning, within the Eurasian Basin, toward Fram Strait. The upper layer west of the Yermak Plateau was cold, deep and comparably saline, similar to what has recently been observed in the interior Eurasian Basin. Closer to the Greenland continental slope the salinity of the upper layer became much lower, and the temperature maximum of the Atlantic Layer was occasionally below  0.5 °C, indicating water masses mainly derived from the Canadian Basin. This implies that the warm pulse of Atlantic Water had not yet made a complete circuit around the Arctic Ocean. The Atlantic Water of the West Spitsbergen Current recirculating within the strait did not extend as far towards Greenland as in the 1980s, leaving a broader passage for waters from the Atlantic and intermediate layers, exiting the Arctic Ocean. A possible interpretation is that the circulation pattern alternates between a strong recirculation of the West Spitsbergen Current in the strait, and a larger exchange of Atlantic Water between the Nordic Seas and the inner parts of the Arctic Ocean.Key words: Oceanography: general (Arctic and Antarctic oceanography; water masses) - Oceanography: physical (general circulation)


2020 ◽  
Vol 47 (3) ◽  
Author(s):  
Qiang Wang ◽  
Claudia Wekerle ◽  
Xuezhu Wang ◽  
Sergey Danilov ◽  
Nikolay Koldunov ◽  
...  

2015 ◽  
Vol 132 ◽  
pp. 128-152 ◽  
Author(s):  
Bert Rudels ◽  
Meri Korhonen ◽  
Ursula Schauer ◽  
Sergey Pisarev ◽  
Benjamin Rabe ◽  
...  

2020 ◽  
Author(s):  
Léon Chafik ◽  
Sara Broomé

<p>The Arctic Ocean has been receiving more of the warm and saline Atlantic Water in the past decades. This water mass enters the Arctic Ocean via two Arctic gateways: the Barents Sea Opening and the Fram Strait. Here, we focus on the fractionation of Atlantic Water at these two gateways using a Lagrangian approach based on satellite-derived geostrophic velocities. Simulated particles are released at 70N at the inner and outer branch of the North Atlantic current system in the Nordic Seas. The trajectories toward the Fram Strait and Barents Sea Opening are found to be largely steered by the bottom topography and there is an indication of an anti-phase relationship in the number of particles reaching the gateways. There is, however, a significant cross-over of particles from the outer branch to the inner branch and into the Barents Sea, which is found to be related to high eddy kinetic energy between the branches. This cross-over may be important for Arctic climate variability.</p>


Ocean Science ◽  
2021 ◽  
Vol 17 (1) ◽  
pp. 111-129
Author(s):  
Anne-Marie Wefing ◽  
Núria Casacuberta ◽  
Marcus Christl ◽  
Nicolas Gruber ◽  
John N. Smith

Abstract. The inflow of Atlantic Water to the Arctic Ocean is a crucial determinant for the future trajectory of this ocean basin with regard to warming, loss of sea ice, and ocean acidification. Yet many details of the fate and circulation of these waters within the Arctic remain unclear. Here, we use the two long-lived anthropogenic radionuclides 129I and 236U together with two age models to constrain the pathways and circulation times of Atlantic Water in the surface (10–35 m depth) and in the mid-depth Atlantic layer (250–800 m depth). We thereby benefit from the unique time-dependent tagging of Atlantic Water by these two isotopes. In the surface layer, a binary mixing model yields tracer ages of Atlantic Water between 9–16 years in the Amundsen Basin, 12–17 years in the Fram Strait (East Greenland Current), and up to 20 years in the Canada Basin, reflecting the pathways of Atlantic Water through the Arctic and their exiting through the Fram Strait. In the mid-depth Atlantic layer (250–800 m), the transit time distribution (TTD) model yields mean ages in the central Arctic ranging between 15 and 55 years, while the mode ages representing the most probable ages of the TTD range between 3 and 30 years. The estimated mean ages are overall in good agreement with previous studies using artificial radionuclides or ventilation tracers. Although we find the overall flow to be dominated by advection, the shift in the mode age towards a younger age compared to the mean age also reflects the presence of a substantial amount of lateral mixing. For applications interested in how fast signals are transported into the Arctic's interior, the mode age appears to be a suitable measure. The short mode ages obtained in this study suggest that changes in the properties of Atlantic Water will quickly spread through the Arctic Ocean and can lead to relatively rapid changes throughout the upper water column in future years.


2021 ◽  
Author(s):  
Agata Grynczel ◽  
Agnieszka Beszczynska-Moeller ◽  
Waldemar Walczowski

<p>The Arctic Ocean is undergoing rapid change. Satellite observations indicate significant negative Arctic sea ice extent trends in all months and substantial reduction of winter sea ice in the Atlantic sector. One of the possible reasons can be sought in the observed warming of Atlantic water, carried through Fram Strait into the Arctic Ocean. Fram Strait, as well as the region north of Svalbard, play a key role in controlling the amount of oceanic heat supplied to the Arctic Ocean and are the place of dynamic interaction between the ocean and sea ice. Shrinking sea ice cover in the southern part of Nansen Basin (north of Svalbard) and shifting the ice edge in Fram Strait are driven by the interplay between increased advection of oceanic heat in the Atlantic origin water and changes in the local atmospheric conditions.</p><p>Processes related to the loss of sea ice and the upward transport of heat from the layers of the Arctic Ocean occupied by the Atlantic water are still not fully explored, but higher than average temperature of Atlantic inflow in the Nordic Seas influence the upper ocean stratification and ice cover in the Arctic Ocean, in particular in the north of Svalbard area. The regional sea ice cover decline is statistically signifcant in all months, but the largest changes in the Nansen Basin are observed in winter season. The winter sea ice loss north of Svalbard is most pronounced above the core of the inflow warm Atlantic water. The basis for this hypothesis of the research is that continuously shrinking sea ice cover in the region north of Svalbard and withdrawal of the sea ice cover towards the northeast are driven by the interplay between increased oceanic heat in the Atlantic origin water and changes in the local atmospheric conditions, that can result in the increased ocean-air-sea ice exchange in winter seasons. In the current study we describe seasonal, interannual and decadal variability of concentration, drift, and thickness of sea ice in two regions, the north of Svalbard and central part of the Fram Strait, based on the satellite observations. To analyze the observed changes in the sea ice cover in relation to Atlantic water variability and atmospheric forcing we employ hydrographic data from the repeated CTD sections and new atmospheric reanalysis from ERA5. Atlantic water variability is described based on the set of summer synoptic sections across the Fram Strait branch of the Atlantic inflow that have been occupied annually since 1996 under the long-term observational program AREX of the Institute of Oceanology PAS. To elucidate driving mechanisms of the sea ice cover changes observed in different seasons in Fram Strait and north of Svalbard we analyze changes in the temperature, heat content and transport of the Atlantic water and describe their potential links to variable atmospheric forcing, including air temperature, air-ocean fluxes, and changes in wind pattern and wind stress.</p>


Ocean Science ◽  
2018 ◽  
Vol 14 (5) ◽  
pp. 1147-1165 ◽  
Author(s):  
Maren Elisabeth Richter ◽  
Wilken-Jon von Appen ◽  
Claudia Wekerle

Abstract. Warm Atlantic Water (AW) flows around the Nordic Seas in a cyclonic boundary current loop. Some AW enters the Arctic Ocean where it is transformed to Arctic Atlantic Water (AAW) before exiting through the Fram Strait. There the AAW is joined by recirculating AW. Here we present the first summer synoptic study targeted at resolving this confluence in the Fram Strait which forms the East Greenland Current (EGC). Absolute geostrophic velocities and hydrography from observations in 2016, including four sections crossing the east Greenland shelf break, are compared to output from an eddy-resolving configuration of the sea ice–ocean model FESOM. Far offshore (120 km at 80.8∘ N) AW warmer than 2 ∘C is found in the northern Fram Strait. The Arctic Ocean outflow there is broad and barotropic, but gets narrower and more baroclinic toward the south as recirculating AW increases the cross-shelf-break density gradient. This barotropic to baroclinic transition appears to form the well-known EGC boundary current flowing along the shelf break farther south where it has been previously described. In this realization, between 80.2 and 76.5∘ N, the southward transport along the east Greenland shelf break increases from roughly 1 Sv to about 4 Sv and the proportion of AW to AAW also increases fourfold from 19±8 % to 80±3 %. Consequently, in the southern Fram Strait, AW can propagate into the Norske Trough on the east Greenland shelf and reach the large marine-terminating glaciers there. High instantaneous variability observed in both the synoptic data and the model output is attributed to eddies, the representation of which is crucial as they mediate the westward transport of AW in the recirculation and thus structure the confluence forming the EGC.


2011 ◽  
Vol 8 (6) ◽  
pp. 2313-2376 ◽  
Author(s):  
B. Rudels

Abstract. The first hydrographic data from the Arctic Ocean, the section from the Laptev Sea to the passage between Greenland and Svalbard obtained by Nansen on the drift by Fram 1893–1896, aptly illustrate the main features of Arctic Ocean oceanography and indicate possible processes active in transforming the water masses in the Arctic Ocean. Many, perhaps most, of these processes were identified already by Nansen, who put his mark on almost all subsequent research in the Arctic Ocean. Here we shall revisit some key questions and follow how our understanding has evolved from the early 20th century to present. What questions, if any, can now be regarded as solved and which remain still open? Five different but connected topics will be discussed: (1) The low salinity surface layer and the storage and export of freshwater. (2) The vertical heat transfer from the Atlantic water to sea ice and to the atmosphere. (3) The circulation and mixing of the two Atlantic inflow branches. (4) The formation and circulation of deep and bottom waters in the Arctic Ocean. (5) The exchanges through Fram Strait. Foci will be on the potential effects of increased freshwater input and reduced sea ice export on the freshwater storage and residence time in the Arctic Ocean, on the deep waters of the Makarov Basin and on the circulation and relative importance of the two inflows, over the Barents Sea and through Fram Strait, for the distribution of heat in the intermediate layers of the Arctic Ocean.


2018 ◽  
Author(s):  
Maren Elisabeth Richter ◽  
Wilken-Jon von Appen ◽  
Claudia Wekerle

Abstract. Warm Atlantic Water (AW) flows around the Nordic Seas in a cyclonic boundary current loop. Some AW enters the Arctic Ocean where it is transformed to Arctic Atlantic Water (AAW) before exiting through Fram Strait. There the AAW is joined by recirculating AW. Here we present the first summer synoptic study targeted at resolving this confluence in Fram Strait which forms the East Greenland Current (EGC). Absolute geostrophic velocities and hydrography from observations in 2016, including four sections crossing the east Greenland shelfbreak, are compared to output from an eddy-resolving configuration of the sea–ice ocean model FESOM. Far offshore (120 km at 80.8° N) AW warmer than 2 °C is found in northern Fram Strait. The Arctic Ocean outflow there is broad and barotropic, but gets narrower and more baroclinic toward the south as recirculating AW increases the cross-shelfbreak density gradient. This barotropic to baroclinic transition appears to form the well-known EGC boundary current flowing along the shelfbreak further south where it has been previously described. In this realization, between 80.2° N and 76.5° N, the southward transport along the east Greenland shelfbreak increases from roughly 1 Sv to about 4 Sv and the warm water composition, defined as the fraction of AW of the sum of AW and AAW (AW/(AW + AAW)), changes from 19 ± 8 % to 80 ± 3 %. Consequently, in southern Fram Strait, AW can propagate into Norske Trough on the east Greenland shelf and reach the large marine terminating glaciers there. High instantaneous variability observed in both the synoptic data and the model output is attributed to eddies, the representation of which is crucial as they mediate the westward transport of AW in the recirculation and thus structure the confluence forming the EGC.


Sign in / Sign up

Export Citation Format

Share Document