scholarly journals Continuous seiche in bays and harbors

Ocean Science ◽  
2016 ◽  
Vol 12 (2) ◽  
pp. 355-368 ◽  
Author(s):  
Joseph Park ◽  
Jamie MacMahan ◽  
William V. Sweet ◽  
Kevin Kotun

Abstract. Seiches are often considered a transitory phenomenon wherein large amplitude water level oscillations are excited by a geophysical event, eventually dissipating some time after the event. However, continuous small-amplitude seiches have been recognized which raises a question regarding the origin of continuous forcing. We examine six bays around the Pacific where continuous seiches are evident and, based on spectral, modal, and kinematic analysis, suggest that tidally forced shelf resonances are a primary driver of continuous seiches.

2015 ◽  
Vol 12 (5) ◽  
pp. 2361-2394
Author(s):  
J. Park ◽  
J. MacMahan ◽  
W. V. Sweet ◽  
K. Kotun

Abstract. Seiches are often considered a transitory phenomenon wherein large amplitude water level oscillations are excited by a geophysical event, eventually dissipating some time after the event. However, continuous small-amplitude seiches have recently been recognized presenting a question as to the origin of continuous forcing. We examine 6 bays around the Pacific where continuous seiches are evident, and based on spectral, modal and kinematic analysis suggest that tidally-forced shelf-resonances are a primary driver of continuous seiches.


1966 ◽  
Vol 25 ◽  
pp. 197-222 ◽  
Author(s):  
P. J. Message

An analytical discussion of that case of motion in the restricted problem, in which the mean motions of the infinitesimal, and smaller-massed, bodies about the larger one are nearly in the ratio of two small integers displays the existence of a series of periodic solutions which, for commensurabilities of the typep+ 1:p, includes solutions of Poincaré'sdeuxième sortewhen the commensurability is very close, and of thepremière sortewhen it is less close. A linear treatment of the long-period variations of the elements, valid for motions in which the elements remain close to a particular periodic solution of this type, shows the continuity of near-commensurable motion with other motion, and some of the properties of long-period librations of small amplitude.To extend the investigation to other types of motion near commensurability, numerical integrations of the equations for the long-period variations of the elements were carried out for the 2:1 interior case (of which the planet 108 “Hecuba” is an example) to survey those motions in which the eccentricity takes values less than 0·1. An investigation of the effect of the large amplitude perturbations near commensurability on a distribution of minor planets, which is originally uniform over mean motion, shows a “draining off” effect from the vicinity of exact commensurability of a magnitude large enough to account for the observed gap in the distribution at the 2:1 commensurability.


1976 ◽  
Vol 31 (12) ◽  
pp. 1517-1519 ◽  
Author(s):  
P. K. Shukla ◽  
M. Y. Yu ◽  
S. G. Tagare

Abstract We show analytically that the nonlinear coupling of a large amplitude electromagnetic wave with finite amplitude ion fluctuations leads to filamentation. The latter consists of striations of the electromagnetic radiation trapped in depressions of the plasma density. The filamentation is found to be either standing or moving normal to the direction of the incoming radiation. Criteria for the existence of localized filaments are obtained. Small amplitude results are discussed.


Ocean Science ◽  
2015 ◽  
Vol 11 (3) ◽  
pp. 439-453 ◽  
Author(s):  
J. Park ◽  
W. V. Sweet ◽  
R. Heitsenrether

Abstract. Seiches are normal modes of water bodies responding to geophysical forcings with potential to significantly impact ecology and maritime operations. Analysis of high-frequency (1 Hz) water level data in Monterey, California, identifies harbor modes between 10 and 120 s that are attributed to specific geographic features. It is found that modal amplitude modulation arises from cross-modal interaction and that offshore wave energy is a primary driver of these modes. Synchronous coupling between modes is observed to significantly impact dynamic water levels. At lower frequencies with periods between 15 and 60 min, modes are independent of offshore wave energy, yet are continuously present. This is unexpected since seiches normally dissipate after cessation of the driving force, indicating an unknown forcing. Spectral and kinematic estimates of these low-frequency oscillations support the idea that a persistent anticyclonic mesoscale gyre adjacent to the bay is a potential mode driver, while discounting other sources.


PLoS ONE ◽  
2014 ◽  
Vol 9 (1) ◽  
pp. e84305 ◽  
Author(s):  
Alberto Rodriguez-Ramirez ◽  
Craig A. Grove ◽  
Jens Zinke ◽  
John M. Pandolfi ◽  
Jian-xin Zhao

Geophysics ◽  
1987 ◽  
Vol 52 (9) ◽  
pp. 1229-1251 ◽  
Author(s):  
Bill Dragoset ◽  
Neil Hargreaves ◽  
Ken Larner

The signature of an air‐gun array can change over a period of time or even from one shot to the next. If the signature variations are large, then deterministic deconvolution, with an operator designed from a single signature or from an average signature, could produce errors significant enough to affect data interpretation. Possible sources of air‐gun instability include changes in gun positions, firing times, and pressures, gun failures, and scattering from the fluctuating rough ocean surface. If an air‐gun array were perfectly stable, after application of signature deconvolution the residual signatures for a sequence of shots would be identically shaped, broadband, zero‐phase wavelets. In practice, air‐gun instabilities lead to two major defects in band‐ limited residual signatures: the central portion of the wavelet can become asymmetrical, and unsuppressed energy can occur in the residual bubble region. Processing experiments done with synthesized air‐gun array signatures show that of all types of air‐gun instabilities likely to occur, only gun dropouts cause signature variations severe enough to affect data interpretation. Gun dropouts produce unsuppressed residual bubble energy that can show up as phantom events on a stacked section or that can obscure small‐amplitude events following large‐amplitude events. Neither gun dropouts nor any other kind of air‐gun instability has a significant effect on resolution within the seismic band. Since gun dropouts do not happen on a shot‐to‐shot basis and other instabilities are unimportant, there is no practical benefit to be gained by deriving and applying individual signature deconvolution operators for each shot. The influence of gun dropouts can be minimized through other actions taken in acquisition and processing.


2001 ◽  
Vol 86 (2) ◽  
pp. 717-723 ◽  
Author(s):  
Andrew J. Delaney ◽  
Pankaj Sah

Neurons in the central amygdala express two distinct types of ionotropic GABA receptor. One is the classical GABAA receptor that is blocked by low concentrations of bicuculline and positively modulated by benzodiazepines. The other is a novel type of ionotropic GABA receptor that is less sensitive to bicuculline but blocked by the GABAC receptor antagonist (1,2,5,6-tetrohydropyridine-4-yl) methylphosphinic acid (TPMPA) and by benzodiazepines. In this study, we examine the distribution of these two receptor types. Recordings of GABAergic miniature inhibitory postsynaptic currents (mIPSCs) showed a wide variation in amplitude. Most events had amplitudes of <50 pA, but a small minority had amplitudes >100 pA. Large-amplitude events also had rise times faster than small-amplitude events. Large-amplitude events were fully blocked by 10 μM bicuculline but unaffected by TPMPA. Small amplitude events were partially blocked by both bicuculline and TPMPA. Focal application of hypertonic sucrose to the soma evoked large-amplitude mIPSCs, whereas focal dendritic application of sucrose evoked small-amplitude mIPSCs. Thus inhibitory synapses on the dendrites of neurons in the central amygdala express both types of GABA receptor, but somatic synapses expressed purely GABAA receptors. Minimal stimulation revealed that inhibitory inputs arising from the laterally located intercalated cells innervate dendritic synapses, whereas inhibitory inputs of medial origin innervated somatic inhibitory synapses. These results show that different types of ionotropic GABA receptors are targeted to spatially and functionally distinct synapses. Thus benzodiazepines will have different modulatory effects on different inhibitory pathways in the central amygdala.


1984 ◽  
Vol 108 ◽  
pp. 217-218 ◽  
Author(s):  
T. Lloyd Evans

One LMC and two SMC fields of 0.3 sq. deg. have been searched for red variables. Carbon stars of V ~ 16–17 are common and are usually of small amplitude, while the LMC alone contains numerous faint M type variables of small amplitude. M giants of small amplitude generally have much shorter periods than carbon stars. The LMC contains numerous Miras with a P-L relation similar to that of galactic Miras, while the SMC has few Miras but many bright red variables of large amplitude which have a steeper P-L relation.


1972 ◽  
Vol 44 ◽  
pp. 171-178 ◽  
Author(s):  
R. J. Angione ◽  
H. J. Smith

Light fluctuations have been found in all 22 QSOs studied by measurement of plates from the Harvard collection, which cover the last eighty years. The conclusions of this study are: (i) There appear to be at least three general classes of variation: (a) erratic, small-amplitude variations, (b) erratic, large-amplitude variations, and (c) slow quasi-periodic variations, e.g. as in 3C 273; (ii) No significant differences were detected between the rates of rise and decline of luminosity; (iii) Definite secular trends over at least 50 years were found in 5 QSOs; (iv) No simple clearcut periods greater than one year have been found; (v) There may be a trend of decreasing amplitude of fluctuations in apparent magnitude with increasing luminosity.


Author(s):  
Palaniswamy Ananthakrishnan

The radiation hydrodynamics of a heaving surface effect ship (SES) is examined including the effect of air compressibility on the hydrodynamic forces and surface waves. Of particular focus of the study has been on determining the nonlinear viscous and air compressibility effects at natural frequencies corresponding to the piston and sloshing wave modes between the hulls and at the natural frequency corresponding to the heave motion of a surface effect ship with the restoring force dominated by the compressibility of the air cushion. In the present paper, the air cushion pressure is assumed to be uniform with its variation due to change of volume modeled using the adiabatic gas law pVγ = constant, where p denotes the absolute pressure of the air, V the air volume bounded by the side hulls, the free surface and the wet deck, and γ the ratio of specific heats Cp/Cv which is about 1.4 for air. The incompressible Navier-Stokes equations governing the nonlinear viscous wave-air-body interaction problem is solved in the time domain using a finite-difference method based on boundary fitted coordinates. New results presented in this paper show that air cushion compressibility affects the generation of waves and wave radiation forces significantly even at small amplitude of hull motion. As already well known, the free surface nonlinearity due to hull motion is significant for large amplitude of oscillation. At small amplitude of body oscillation, significant nonlinearity can be caused by air compressibility resulting in the generation of higher harmonic waves and forces. The results also highlight the significance of viscosity and flow separation, in conjunction with air compressibility, in the case of large amplitude hull motion with a small draft.


Sign in / Sign up

Export Citation Format

Share Document