scholarly journals Short commentary on marine productivity at Arctic shelf breaks: upwelling, advection and vertical mixing

Ocean Science ◽  
2018 ◽  
Vol 14 (2) ◽  
pp. 293-300 ◽  
Author(s):  
Achim Randelhoff ◽  
Arild Sundfjord

Abstract. The future of Arctic marine ecosystems has received increasing attention in recent years as the extent of the sea ice cover is dwindling. Although the Pacific and Atlantic inflows both import huge quantities of nutrients and plankton, they feed into the Arctic Ocean in quite diverse regions. The strongly stratified Pacific sector has a historically heavy ice cover, a shallow shelf and dominant upwelling-favourable winds, while the Atlantic sector is weakly stratified, with a dynamic ice edge and a complex bathymetry. We argue that shelf break upwelling is likely not a universal but rather a regional, albeit recurring, feature of “the new Arctic”. It is the regional oceanography that decides its importance through a range of diverse factors such as stratification, bathymetry and wind forcing. Teasing apart their individual contributions in different regions can only be achieved by spatially resolved time series and dedicated modelling efforts. The Northern Barents Sea shelf is an example of a region where shelf break upwelling likely does not play a dominant role, in contrast to the shallower shelves north of Alaska where ample evidence for its importance has already accumulated. Still, other factors can contribute to marked future increases in biological productivity along the Arctic shelf break. A warming inflow of nutrient-rich Atlantic Water feeds plankton at the same time as it melts the sea ice, permitting increased photosynthesis. Concurrent changes in sea ice cover and zooplankton communities advected with the boundary currents make for a complex mosaic of regulating factors that do not allow for Arctic-wide generalizations.

2017 ◽  
Author(s):  
Achim Randelhoff ◽  
Arild Sundfjord

Abstract. The future of Arctic marine ecosystems has received increasing attention in recent years as the extent of the sea ice cover is dwindling. Although the Pacific and Atlantic inflows both import huge quantities of nutrients and plankton, they feed into the Arctic Ocean in quite diverse regions. The strongly stratified Pacific sector has a historically heavy ice cover, a shallow shelf and dominant upwelling-favourable winds, while the Atlantic sector is weakly stratified, with a dynamic ice edge and a complex bathymetry. We argue that shelf break upwelling is likely not a universal but rather a regional, albeit recurring feature of the new Arctic. Instead, it is the regional oceanography that decides its importance through a range of diverse factors such as stratification, bathymetry and wind forcing. Teasing apart their individual contributions in different regions can only be achieved by spatially resolved timeseries and dedicated modelling efforts. The Northern Barents Sea shelf is an example of a region where shelf break upwelling likely does not play a dominant role, in contrast to the shallower shelves north of Alaska, where ample evidence for its importance has already accumulated.


2020 ◽  
pp. 1-65
Author(s):  
Pawel Schlichtholz

AbstractInvestigation of the predictability of sea ice cover in the Barents Sea is of paramount importance since sea ice changes in this part of the Arctic not only affect local marine ecosystems and human activities but may also influence weather and climate in northern mid-latitudes. Here, observational data from the period 1981-2018 are used to identify statistical linkages of wintertime sea ice cover in the Barents Sea region to preceding sea surface temperature (SST) and Atlantic water temperature anomalies in that region. We find that the ocean temperature anomalies formed by local air-sea interactions during the winter-to-spring season are a significant source of predictability for sea ice area (SIA) in the Barents Sea region the following winter. Optimal areas for constructing SST predictors of Barents Sea SIA and skill scores from retrospective statistical forecasts are shown to differ between the periods to and since the onset of rapid sea ice decline in the region. In the EARLY period (1982-2003), springtime SSTs in the western Barents Sea predicted 44% of the variance of the following winter Barents Sea SIA. In the LATE period (2003-2017), springtime SSTs in the southern Barents Sea predicted 70% of the variance of the following winter Barents Sea SIA. Regression analysis suggests that feedbacks from anomalous winds may be important for the predictability of wintertime sea ice cover in the Barents Sea region.


2019 ◽  
Vol 92 (2) ◽  
pp. 430-449 ◽  
Author(s):  
Elena Ivanova ◽  
Ivar Murdmaa ◽  
Anne de Vernal ◽  
Bjørg Risebrobakken ◽  
Alexander Peyve ◽  
...  

AbstractThe Barents Sea offers a suitable location for documenting advection of warm and saline Atlantic Water (AW) into the Arctic and its impact on deglaciation and postglacial conditions. We investigate the timing, succession, and mechanisms of the transition from proximal glaciomarine to marine environment in the northwestern Barents Sea. Two studied sediment cores demonstrate diachronous retreat of the grounded ice sheet from the Kvitøya Trough (core S2528) to Erik Eriksen Trough (core S2519). Oxygen isotope records from core S2528 depict a two-step pattern, with lower δ18O values prior to the Younger Dryas (YD), and higher values afterward because of advection of the more saline, 18O-enriched AW. At this location, subsurface AW penetration increased during the Allerød and YD/Preboreal transition. In the study area, foraminiferal and dinocyst data from the YD interval suggest cold conditions, extensive sea-ice cover, and brine formation, along with the flow of chilled AW at subsurface and the development of a high-productivity polynya in the Erik Eriksen Trough. Dense winter sea-ice cover with seasonal productivity persisted in the Kvitøya Trough area during the early Holocene, whereas surface warming seems to have occurred during the middle Holocene interval.


2020 ◽  
Author(s):  
Agata Grynczel ◽  
Agnieszka Beszczynska-Moeller ◽  
Waldemar Walczowski

<p>Recent satellite passive microwave observations indicate significant negative Arctic sea ice extent trends in all months and substantial reduction of winter sea ice in the Atlantic sector. Warm and salty oceanic water masses from the North Atlantic flow towards the Arctic Ocean along the eastern Fram Strait, carried by the West Spitsbergen Current (WSC). Fram Strait, as well as the region north of Svalbard, play a key role in controlling the amount of oceanic heat supplied to the Arctic Ocean and are the place of dynamic interaction between the ocean and sea ice. The north of Svalbard area is one of the regions where the substantial changes in sea ice concentrations are observed both in summer and in winter. One of the possible reasons can be sought in the observed warming of Atlantic water, carried through Fram Strait into the Arctic Ocean. The main goal of this work is to analyse and explain the sea ice variability along main pathways of the Atlantic origin water (AW) in the context of observed warming of Atlantic water layer. Shrinking sea ice cover in the southern part of Nansen Basin (north of Svalbard) and shifting the ice edge in Fram Strait are driven by the interplay between increased advection of oceanic heat in the Atlantic origin water and changes in the local atmospheric conditions that result in the increased ocean-air-sea ice exchange in winter seasons. The basis for this hypothesis is warming of winter mean surface air temperature observed north of Svalbard and withdrawal of the sea ice cover towards the northeast, along with the pathways of water inflow in the Atlantic sector of the Arctic Ocean. Hydrographic data from vertical CTD profiles were collected during annual summer expeditions of the research vessel "Oceania", conducted in Fram Strait and the southern part of the Nansen Basin over the past two decades. The measurement strategy of the original research program AREX, which consists of the performance of cross-sections perpendicular to the presumed direction of the West Spitsbergen Current, allowed to observe changes in the properties and transport of the Atlantic Water carried to the Arctic Ocean. The analysis of past and present changes in the sea ice cover in relation to Atlantic water variability and atmospheric forcing employs hydrographic data from the repeated CTD sections, systematically collected since 1996 during annual summer Arctic long-term monitoring program AREX, satellite products of sea ice concentration and drift, and selected reanalysis data sets.</p>


2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Mats Brockstedt Olsen Huserbråten ◽  
Elena Eriksen ◽  
Harald Gjøsæter ◽  
Frode Vikebø

Abstract The Arctic amplification of global warming is causing the Arctic-Atlantic ice edge to retreat at unprecedented rates. Here we show how variability and change in sea ice cover in the Barents Sea, the largest shelf sea of the Arctic, affect the population dynamics of a keystone species of the ice-associated food web, the polar cod (Boreogadus saida). The data-driven biophysical model of polar cod early life stages assembled here predicts a strong mechanistic link between survival and variation in ice cover and temperature, suggesting imminent recruitment collapse should the observed ice-reduction and heating continue. Backtracking of drifting eggs and larvae from observations also demonstrates a northward retreat of one of two clearly defined spawning assemblages, possibly in response to warming. With annual to decadal ice-predictions under development the mechanistic physical-biological links presented here represent a powerful tool for making long-term predictions for the propagation of polar cod stocks.


2014 ◽  
Vol 14 (7) ◽  
pp. 10929-10999 ◽  
Author(s):  
R. Döscher ◽  
T. Vihma ◽  
E. Maksimovich

Abstract. The Arctic sea ice is the central and essential component of the Arctic climate system. The depletion and areal decline of the Arctic sea ice cover, observed since the 1970's, have accelerated after the millennium shift. While a relationship to global warming is evident and is underpinned statistically, the mechanisms connected to the sea ice reduction are to be explored in detail. Sea ice erodes both from the top and from the bottom. Atmosphere, sea ice and ocean processes interact in non-linear ways on various scales. Feedback mechanisms lead to an Arctic amplification of the global warming system. The amplification is both supported by the ice depletion and is at the same time accelerating the ice reduction. Knowledge of the mechanisms connected to the sea ice decline has grown during the 1990's and has deepened when the acceleration became clear in the early 2000's. Record summer sea ice extents in 2002, 2005, 2007 and 2012 provided additional information on the mechanisms. This article reviews recent progress in understanding of the sea ice decline. Processes are revisited from an atmospheric, ocean and sea ice perspective. There is strong evidence for decisive atmospheric changes being the major driver of sea ice change. Feedbacks due to reduced ice concentration, surface albedo and thickness allow for additional local atmosphere and ocean influences and self-supporting feedbacks. Large scale ocean influences on the Arctic Ocean hydrology and circulation are highly evident. Northward heat fluxes in the ocean are clearly impacting the ice margins, especially in the Atlantic sector of the Arctic. Only little indication exists for a direct decisive influence of the warming ocean on the overall sea ice cover, due to an isolating layer of cold and fresh water underneath the sea ice.


2020 ◽  
pp. 1-15
Author(s):  
Camille Brice ◽  
Anne de Vernal ◽  
Elena Ivanova ◽  
Simon van Bellen ◽  
Nicolas Van Nieuwenhove

Abstract Postglacial changes in sea-surface conditions, including sea-ice cover, summer temperature, salinity, and productivity were reconstructed from the analyses of dinocyst assemblages in core S2528 collected in the northwestern Barents Sea. The results show glaciomarine-type conditions until about 11,300 ± 300 cal yr BP and limited influence of Atlantic water at the surface into the Barents Sea possibly due to the proximity of the Svalbard-Barents Sea ice sheet. This was followed by a transitional period generally characterized by cold conditions with dense sea-ice cover and low-salinity pulses likely related to episodic freshwater or meltwater discharge, which lasted until 8700 ± 700 cal yr BP. The onset of “interglacial” conditions in surface waters was marked by a major change in dinocyst assemblages, from dominant heterotrophic to dominant phototrophic taxa. Until 4100 ± 150 cal yr BP, however, sea-surface conditions remained cold, while sea-surface salinity and sea-ice cover recorded large amplitude variations. By ~4000 cal yr BP optimum sea-surface temperature of up to 4°C in summer and maximum salinity of ~34 psu suggest enhanced influence of Atlantic water, and productivity reached up to 150 gC/m2/yr. After 2200 ± 1300 cal yr BP, a distinct cooling trend accompanied by sea-ice spreading characterized surface waters. Hence, during the Holocene, with exception of an interval spanning about 4000 to 2000 cal yr BP, the northern Barents Sea experienced harsh environments, relatively low productivity, and unstable conditions probably unsuitable for human settlements.


2014 ◽  
Vol 14 (24) ◽  
pp. 13571-13600 ◽  
Author(s):  
R. Döscher ◽  
T. Vihma ◽  
E. Maksimovich

Abstract. Sea ice is the central component and most sensitive indicator of the Arctic climate system. Both the depletion and areal decline of the Arctic sea ice cover, observed since the 1970s, have accelerated since the millennium. While the relationship of global warming to sea ice reduction is evident and underpinned statistically, it is the connecting mechanisms that are explored in detail in this review. Sea ice erodes both from the top and the bottom. Atmospheric, oceanic and sea ice processes interact in non-linear ways on various scales. Feedback mechanisms lead to an Arctic amplification of the global warming system: the amplification is both supported by the ice depletion and, at the same time, accelerates ice reduction. Knowledge of the mechanisms of sea ice decline grew during the 1990s and deepened when the acceleration became clear in the early 2000s. Record minimum summer sea ice extents in 2002, 2005, 2007 and 2012 provide additional information on the mechanisms. This article reviews recent progress in understanding the sea ice decline. Processes are revisited from atmospheric, oceanic and sea ice perspectives. There is strong evidence that decisive atmospheric changes are the major driver of sea ice change. Feedbacks due to reduced ice concentration, surface albedo, and ice thickness allow for additional local atmospheric and oceanic influences and self-supporting feedbacks. Large-scale ocean influences on Arctic Ocean hydrology and circulation are highly evident. Northward heat fluxes in the ocean are clearly impacting the ice margins, especially in the Atlantic sector of the Arctic. There is little indication of a direct and decisive influence of the warming ocean on the overall sea ice cover, due to an isolating layer of cold and fresh water underneath the sea ice.


2021 ◽  
Author(s):  
Waldemar Walczowski ◽  
Agnieszka Beszczyńska-Möller ◽  
Małgorzata Merchel

<p>Almost 4000 operational Argo floats covering the world's ocean provide near-real-time data on its state. The Arctic is less covered than other waters, but observations collected by Argo floats are gaining in importance. By delivering year-round measurements from the water column down to 2000 m (or to the bottom) along float trajectories, they complement and enhance the synoptic data collected during ship campaigns or by fixed moorings. However, oceanographic measurements with autonomous platforms are significantly limited in the Arctic regions by the presence of sea ice.</p><p>Here we present results obtained by Argo floats deployed in 2012-2020 by the Institute of Oceanology Polish Academy of Sciences (IOPAN) during summer campaigns of RV Oceania. In most years, the Argo floats were launched in the eastern branch (core) and in the western branch of the West Spitsbergen Current (WSC) within the Atlantic water inflow towards the Arctic Ocean. Floats deployed in the WSC core drift predominantly northward over the shelf break and upper slope west of Svalbard. After passing Fram Strait the floats usually turn eastward and continue over the northern Svalbard shelf brake, being advected with the Svalbard Branch of the Atlantic inflow into the Arctic Ocean Boundary Current. The easternmost position reached by the IOPAN Argo float was 39.6°E. Ultimately all deployed floats submerge under the sea ice north of Svalbard or farther to the east and die under the ice. Argo floats deployed in the western WSC branch over the underwater ridges, usually recirculate to the west and continue southward with the East Greenland Current. The float WMO 3901851 that drifted to the Labrador Sea, reached the southernmost latitude of 52.5°N and have been working until now for 4.5 years, which is unusual in the Arctic conditions.    </p><p>The measurements collected in the Marginal Ice Zone are particularly interesting for studying the ocean-atmosphere-ice interactions at the boundary between open and ice-covered ocean as well as they can be used for developing the ice avoidance algorithms for the Argo floats and other under ice sensors and platforms. A number of profiles obtained by Argo floats under the sea ice provide unique measurements in the upper ocean layer that is usually inaccessible from other platforms (e.g., moorings). In 2020 several profiles were collected under the ice cover by Argo floats north of Svalbard and transmitted after the float emerged in the polynya. The eastward flow of warm (up to 4° C at 80 m depth) Atlantic water was observed along the float trajectory over the shelf break. Measurements by Argo floats, revealing the dynamics and transformation of the Atlantic water entering the Arctic Ocean, are compared with ship-borne observations collected during the IOPAN long-term observational program AREX and year-round data from IOPAN moorings deployed north of Svalbard under the A-TWAIN and INTAROS projects.</p>


2021 ◽  
Author(s):  
Agata Grynczel ◽  
Agnieszka Beszczynska-Moeller ◽  
Waldemar Walczowski

<p>The Arctic Ocean is undergoing rapid change. Satellite observations indicate significant negative Arctic sea ice extent trends in all months and substantial reduction of winter sea ice in the Atlantic sector. One of the possible reasons can be sought in the observed warming of Atlantic water, carried through Fram Strait into the Arctic Ocean. Fram Strait, as well as the region north of Svalbard, play a key role in controlling the amount of oceanic heat supplied to the Arctic Ocean and are the place of dynamic interaction between the ocean and sea ice. Shrinking sea ice cover in the southern part of Nansen Basin (north of Svalbard) and shifting the ice edge in Fram Strait are driven by the interplay between increased advection of oceanic heat in the Atlantic origin water and changes in the local atmospheric conditions.</p><p>Processes related to the loss of sea ice and the upward transport of heat from the layers of the Arctic Ocean occupied by the Atlantic water are still not fully explored, but higher than average temperature of Atlantic inflow in the Nordic Seas influence the upper ocean stratification and ice cover in the Arctic Ocean, in particular in the north of Svalbard area. The regional sea ice cover decline is statistically signifcant in all months, but the largest changes in the Nansen Basin are observed in winter season. The winter sea ice loss north of Svalbard is most pronounced above the core of the inflow warm Atlantic water. The basis for this hypothesis of the research is that continuously shrinking sea ice cover in the region north of Svalbard and withdrawal of the sea ice cover towards the northeast are driven by the interplay between increased oceanic heat in the Atlantic origin water and changes in the local atmospheric conditions, that can result in the increased ocean-air-sea ice exchange in winter seasons. In the current study we describe seasonal, interannual and decadal variability of concentration, drift, and thickness of sea ice in two regions, the north of Svalbard and central part of the Fram Strait, based on the satellite observations. To analyze the observed changes in the sea ice cover in relation to Atlantic water variability and atmospheric forcing we employ hydrographic data from the repeated CTD sections and new atmospheric reanalysis from ERA5. Atlantic water variability is described based on the set of summer synoptic sections across the Fram Strait branch of the Atlantic inflow that have been occupied annually since 1996 under the long-term observational program AREX of the Institute of Oceanology PAS. To elucidate driving mechanisms of the sea ice cover changes observed in different seasons in Fram Strait and north of Svalbard we analyze changes in the temperature, heat content and transport of the Atlantic water and describe their potential links to variable atmospheric forcing, including air temperature, air-ocean fluxes, and changes in wind pattern and wind stress.</p>


Sign in / Sign up

Export Citation Format

Share Document