Review of the manuscript Modelling of sediment transport and morphological evolution under the combined action of waves and currents, submitted to Ocean Science by Franz et al.

2017 ◽  
Author(s):  
A.B. Fortunato
Ocean Science ◽  
2017 ◽  
Vol 13 (5) ◽  
pp. 673-690 ◽  
Author(s):  
Guilherme Franz ◽  
Matthias T. Delpey ◽  
David Brito ◽  
Lígia Pinto ◽  
Paulo Leitão ◽  
...  

Abstract. Coastal defence structures are often constructed to prevent beach erosion. However, poorly designed structures may cause serious erosion problems in the downdrift direction. Morphological models are useful tools to predict such impacts and assess the efficiency of defence structures for different scenarios. Nevertheless, morphological modelling is still a topic under intense research effort. The processes simulated by a morphological model depend on model complexity. For instance, undertow currents are neglected in coastal area models (2DH), which is a limitation for simulating the evolution of beach profiles for long periods. Model limitations are generally overcome by predefining invariant equilibrium profiles that are allowed to shift offshore or onshore. A more flexible approach is described in this paper, which can be generalised to 3-D models. The present work is based on the coupling of the MOHID modelling system and the SWAN wave model. The impacts of different designs of detached breakwaters and groynes were simulated in a schematic beach configuration following a 2DH approach. The results of bathymetry evolution are in agreement with the patterns found in the literature for several existing structures. The model was also tested in a 3-D test case to simulate the formation of sandbars by undertow currents. The findings of this work confirmed the applicability of the MOHID modelling system to study sediment transport and morphological changes in coastal zones under the combined action of waves and currents. The same modelling methodology was applied to a coastal zone (Costa da Caparica) located at the mouth of a mesotidal estuary (Tagus Estuary, Portugal) to evaluate the hydrodynamics and sediment transport both in calm water conditions and during events of highly energetic waves. The MOHID code is available in the GitHub repository.


2017 ◽  
Author(s):  
Guilherme Franz ◽  
Matthias T. Delpey ◽  
David Brito ◽  
Lígia Pinto ◽  
Paulo Leitão ◽  
...  

Abstract. Coastal defence structures are often constructed to prevent beach erosion. However, poorly designed structures may cause serious erosion problems in the downdrift direction. Morphological models are useful tools to predict such impacts and assess the efficiency of defence structures for different scenarios. Nevertheless, morphological modelling is still a topic under intense research effort. The processes simulated by a morphological model depend on model complexity. For instance, undertow currents are neglected in coastal area models (2DH), which is a limitation for simulating the evolution of beach profiles for long periods. Model limitations are generally overcome by predefining invariant equilibrium profiles that are allowed to shift offshore or onshore. A more flexible approach is described in this paper, which can be generalised to 3D models. The present work is based on the coupling of the MOHID modelling system and SWAN wave model. The impacts of different designs of detached breakwaters and groynes were simulated in a schematic beach configuration following a 2DH approach. The results of bathymetry evolution are in agreement with the patterns found in the literature for several existing structures. The model was also tested in a 3D test case to simulate the formation of sandbars by undertow currents. The findings of this work confirmed the applicability of the MOHID modelling system to study sediment transport and morphological changes in coastal zones under the combined action of waves and currents. The same modelling methodology was applied to a coastal zone (Costa da Caparica) located at the mouth of a mesotidal estuary (Tagus Estuary, Portugal) to evaluate the hydrodynamics and sediment transport in calm water conditions and during events of highly energetic waves.


1983 ◽  
Vol 10 (1) ◽  
pp. 142-149 ◽  
Author(s):  
Michael C. Quick

Sediment transport is measured under the combined action of waves and currents. Measurements are made with currents in the direction of wave advance and with currents opposing the wave motion. Theoretical relationships are considered that predict the wave velocity field and the mass transport velocity for zero current and for steady currents.Following Bagnold's approach, a transport power relationship is developed to predict the sediment transport rate. Making assumptions for the mass transport velocity, the transport power is shown to agree with the measured sediment transport rates. It is particularly noted that the sediment transport direction is mainly determined by the direction of wave movement, even for adverse currents, until the waves start to break. Keywords: sediment transport, waves and currents, coastal engineering.


2015 ◽  
Vol 30 (4) ◽  
pp. 351-360 ◽  
Author(s):  
Yongjun Lu ◽  
Shouqian Li ◽  
Liqin Zuo ◽  
Huaixiang Liu ◽  
J.A. Roelvink

2011 ◽  
Vol 1 (7) ◽  
pp. 25
Author(s):  
J.N. Svasek ◽  
H. Engel

The "Rijkswaterstaat" has developed a method based on the use of radio-active tracers for the evaluation of sediment transport due to the combined action of waves and currents. The results of preparatory studies and a laboratory test were published in a previous report by J.J. Arlman, P. Santema and J.N. Svasek [1]. The main principles of the method were 1. Detection by a sledge-mounted unit towed by a survey vessel and continuous registration on board of the radio-activity measured on the sea bottom. 2. Employment of low specific radio-activity of tracer material and a large quantity thereof. 5> Use of a long-life isotope and high radio-activity. k. Measurement of the vertical distribution of radioactivity in core samples or if possible by discrimination. In March 1958 the first lot of tracer material was placed on the sea bed. The tracer material consisted of the radio-active isotope Scandium^" emitting 2 curies incorporated in 100 kg "greensand". Scandium^" has a half-life of 8^ days and emits strong gramma radiations with energies of 0.89 and 1.12 MeV. Afterwards, in 1959, two series of measurements were taken near the entrance to the Rotterdam Waterway. Four droppings formed one series; they were generally carried out in the following manner: 50 kg greensand labeled with 2 Curies Scandium was dropped in k places at a safe distance from each other. 2 of the 8 portions consisted of smaller quantities of both radio-activity and greensand. In the following paragraphs the preparation, dropping and detection of the tracer, the working out of the registrations and the interpretation of the results of the 1959 measurements are discussed.


2012 ◽  
Vol 1 (33) ◽  
pp. 50 ◽  
Author(s):  
Le Phuong Dong ◽  
Shinji Sato

Prototype scale laboratory experiments have been conducted to investigate the sheetflow sediment transport of uniform sands under different skewed-asymmetric oscillatory flows. Experimental results reveal that in most of the case with fine sand, the “cancelling effect”, which balances the on-/off-shore net transport under pure asymmetric/skewed flows and results a moderate net transport, was developed for combined skewed-asymmetric flow. However, under some certain conditions (T > 5s) with coarse sands, the onshore sediment transport was enhanced by 50% under combined skewed-asymmetric flows. Sand transport mechanism under oscillatory sheetflow conditions is also studied by comparing the maximum bed shear stress and the phase lag parameter at each half cycle. A comparison of measurements including the new experimental data with a number of practical sand transport formulations shows that the Dong et al. (2013) formulation performs the best in predicting the measured net transport rates over a wide range of experimental conditions


2021 ◽  
Author(s):  
Mara Orescanin ◽  
Tyonna McPherson ◽  
Paul Jessen

<p>The Carmel River runs 58 km from the Santa Lucia Mountains through the Carmel Valley eventually entering a lagoon at Carmel River State Beach near Carmel, California, USA. During the dry summer months, the lagoon is closed, with no connection to the coastal ocean.  However, during the wet winter months, the river often breaches through the lagoon allowing water to freely flow between the river and Carmel Bay. Sediment transport, in part owing to river discharge and in part owing to ocean forcing (tides and waves), contributes heavily to whether the lagoon is open or closed: when there are low flow conditions, waves and tides can decrease flow rates in the breach, allowing sediment to settle. The sediment budget is expected to be a closed system, owing to the rocky headlands and long-term stability (no yearly regression or transgression) of the shoreline, despite managed attempts to control breach and closure timing. However, it is currently unknown 1) how velocity profiles evolve during breaching, and 2) how much sediment moves during such an event. The hypothesis is that the breach mouth can completely disappear and re-emerge over a single breach-closure cycle, leading to meter-scale daily accretion and erosion rates of berm height if berm elevation is significantly lower than the expected steady-state berm height. Furthermore, it is hypothesized that during active breaching, discharge rates through the breach channel are larger than upstream river discharge rates owing to elevated water levels within the back lagoon. This study uses a RiverSurveyor M9 Acoustic Doppler Profiler to measure outflow discharge and GPS topographic surveys to quantify elevation changes. A velocity profile can be built which will estimate the sediment transport potential within the breach. The information obtained will help identify and better understand the river discharge thresholds which contribute to frequent breaching as well as estimates of morphological evolution during breaching, which are currently unknown, and can assist in determining likelihood of successful managed breaching and closure events. </p>


Sign in / Sign up

Export Citation Format

Share Document