scholarly journals Operational analysis of the circulation and shelf-slope exchanges in the continental margin of the northwestern Mediterranean

2006 ◽  
Vol 3 (3) ◽  
pp. 585-608
Author(s):  
A. Jordi ◽  
G. Basterretxea ◽  
A. Orfila ◽  
J. Tintoré

Abstract. In this paper, we present the results from a high horizontal resolution numerical simulation of the northwestern Mediterranean using a z-level, non-hydrostatic, primitive equation ocean model (DieCAST). The high resolution allows an accurate representation of the submarine canyons that presides in the region. The model is one-way coupled to a large scale model of the Mediterrenean Sea through open boundaries and uses the atmospheric forcing fields provided in terms of HIRLAM outputs by the Spanish National Institute of Meteorology. Results show that the model can successfully reproduce the complex general circulation characteristics of the area, including the modificacions induced by canyons in their vicinity and other phenomena observed such as instabilities and coastal trapped waves. The sea surface temperature is similar to satellite observations except that simulated temperatures are slightly warmer near the coast than observations and colder near the open boundaries. An important topic of this work is the computation of the shelf-slope exchanges, which are able to renew shelf waters in a few months.

Ocean Science ◽  
2006 ◽  
Vol 2 (2) ◽  
pp. 173-181 ◽  
Author(s):  
A. Jordi ◽  
G. Basterretxea ◽  
A. Orfila ◽  
J. Tintoré

Abstract. In this paper, we present the results from a high horizontal resolution numerical simulation of the northwestern Mediterranean using a z-level, non-hydrostatic, primitive equation ocean model (DieCAST). The high resolution allows an accurate representation of the submarine canyons that presides in the region. The model is one-way coupled to a large scale model of the Mediterranean Sea through open boundaries and uses the atmospheric forcing fields provided in terms of HIRLAM outputs by the Spanish National Institute of Meteorology. Results show that the model can successfully reproduce the complex general circulation characteristics of the area, including the modifications induced by canyons in their vicinity and other phenomena observed such as instabilities and coastal trapped waves. The sea surface temperature is similar to satellite observations except that simulated temperatures are slightly warmer near the coast than observations and colder near the open boundaries. An important topic of this work is the computation of the shelf-slope exchanges, which are able to renew shelf waters in a few months.


2019 ◽  
Vol 49 (5) ◽  
pp. 1141-1157 ◽  
Author(s):  
Patrick Wagner ◽  
Siren Rühs ◽  
Franziska U. Schwarzkopf ◽  
Inga Monika Koszalka ◽  
Arne Biastoch

AbstractTo model tracer spreading in the ocean, Lagrangian simulations in an offline framework are a practical and efficient alternative to solving the advective–diffusive tracer equations online. Differences in both approaches raise the question of whether both methods are comparable. Lagrangian simulations usually use model output averaged in time, and trajectories are not subject to parameterized subgrid diffusion, which is included in the advection–diffusion equations of ocean models. Previous studies focused on diffusivity estimates in idealized models but could show that both methods yield similar results as long as the deformations-scale dynamics are resolved and a sufficient amount of Lagrangian particles is used. This study compares spreading of an Eulerian tracer simulated online and a cloud of Lagrangian particles simulated offline with velocities from the same ocean model. We use a global, eddy-resolving ocean model featuring 1/20° horizontal resolution in the Agulhas region around South Africa. Tracer and particles were released at one time step in the Cape Basin and below the mixed layer and integrated for 3 years. Large-scale diagnostics, like mean pathways of floats and tracer, are almost identical and 1D horizontal distributions show no significant differences. Differences in vertical distributions, seen in a reduced vertical spreading and downward displacement of particles, are due to the combined effect of unresolved subdaily variability of the vertical velocities and the spatial variation of vertical diffusivity. This, in turn, has a small impact on the horizontal spreading behavior. The estimates of eddy diffusivity from particles and tracer yield comparable results of about 4000 m2 s−1 in the Cape Basin.


Ocean Science ◽  
2007 ◽  
Vol 3 (1) ◽  
pp. 77-89 ◽  
Author(s):  
M. A. Ahumada ◽  
A. Cruzado

Abstract. The Princeton Ocean Model – POM (Blumberg and Mellor, 1987) has been implemented in the Northwestern Mediterranean nested (in one-way off-line mode) to a general circulation model of the Mediterranean Sea – OGCM (Pinardi and Masetti, 2000; Demirov and Pinardi, 2002) in order to investigate if this model configuration is capable of reproducing the major features of the circulation as known from observations and to improve what has been made by previous numerical modeling works. According to the model results, the large-scale cyclonic circulation in the northern part of the Northwestern Mediterranean is, at least in the upper layers, less coherent in winter and spring than in summer and autumn. Furthermore, there is evidence that the mesoscale structure (eddies and meanders) is, during all year, a significant dynamic characteristic in this region of the Mediterranean Sea. Finally, concerning the circulation in the lower layers, the model results have confirmed that Levantine Intermediate Water (LIW) and Western Mediterranean Deep Water (WMDW) follow essentially a cyclonic path during all year.


2006 ◽  
Vol 3 (4) ◽  
pp. 1255-1292
Author(s):  
M. A. Ahumada ◽  
A. Cruzado

Abstract. The Princeton Ocean Model – POM (Blumberg and Mellor, 1987) has been implemented in the Northwestern Mediterranean nested (in one-way off-line mode) to a general circulation model of the Mediterranean Sea – OGCM (Pinardi and Masetti, 2000; Demirov and Pinardi, 2002) in order to investigate if this model configuration is capable of reproducing the major features of the circulation as known from observations and to improve what has been made by previous numerical modeling works. According to the model results, the large-scale cyclonic circulation in the northern part of the Northwestern Mediterranean is, at least in the upper layers, less coherent in winter and spring than in summer and autumn. Furthermore, there is evidence that the mesoscale structure (eddies and meanders) is, during all year, a significant dynamic characteristic in this region of the Mediterranean Sea. Finally, concerning the circulation in the lower layers has been confirmed that the Levantine Intermediate Water and the Western Mediterranean Deep Water follow essentially a cyclonic path during all year.


2013 ◽  
Vol 14 (2) ◽  
Author(s):  
Noor Fachrizal

Biomass such as agriculture waste and urban waste are enormous potency as energy resources instead of enviromental problem. organic waste can be converted into energy in the form of liquid fuel, solid, and syngas by using of pyrolysis technique. Pyrolysis process can yield higher liquid form when the process can be drifted into fast and flash response. It can be solved by using microwave heating method. This research is started from developing an experimentation laboratory apparatus of microwave-assisted pyrolysis of biomass energy conversion system, and conducting preliminary experiments for gaining the proof that this method can be established for driving the process properly and safely. Modifying commercial oven into laboratory apparatus has been done, it works safely, and initial experiments have been carried out, process yields bio-oil and charcoal shortly, several parameters are achieved. Some further experiments are still needed for more detail parameters. Theresults may be used to design small-scale continuous model of productionsystem, which then can be developed into large-scale model that applicable for comercial use.


1984 ◽  
Vol 106 (1) ◽  
pp. 222-228 ◽  
Author(s):  
M. L. Marziale ◽  
R. E. Mayle

An experimental investigation was conducted to examine the effect of a periodic variation in the angle of attack on heat transfer at the leading edge of a gas turbine blade. A circular cylinder was used as a large-scale model of the leading edge region. The cylinder was placed in a wind tunnel and was oscillated rotationally about its axis. The incident flow Reynolds number and the Strouhal number of oscillation were chosen to model an actual turbine condition. Incident turbulence levels up to 4.9 percent were produced by grids placed upstream of the cylinder. The transfer rate was measured using a mass transfer technique and heat transfer rates inferred from the results. A direct comparison of the unsteady and steady results indicate that the effect is dependent on the Strouhal number, turbulence level, and the turbulence length scale, but that the largest observed effect was only a 10 percent augmentation at the nominal stagnation position.


1989 ◽  
Author(s):  
R. DE GAAIJ ◽  
E. VAN RIETBERGEN ◽  
M. SLEGERS

Sign in / Sign up

Export Citation Format

Share Document