scholarly journals Spatiotemporal variations of <I>f</I>CO<sub>2</sub> in the North Sea

2009 ◽  
Vol 6 (2) ◽  
pp. 1655-1686
Author(s):  
A. M. Omar ◽  
A. Olsen ◽  
T. Johannessen ◽  
M. Hoppema ◽  
H. Thomas ◽  
...  

Abstract. Data from two Voluntary Observing Ship (VOS) (MS Trans Carrier and MV Nuka Arctica), acquired along one zonal and one meridional transect (2005–2007) augmented with data subsets from ten cruises (1987–2005) were used to investigate the spatio-temporal variations of the CO2 fugacity in seawater (fCO2sw) in the North Sea at seasonal and inter-annual time scales. The observed seasonal fCO2sw variations were related to variations in sea surface temperature (SST), biology plus mixing, and air-sea CO2 exchange. Over the study period, the seasonal amplitude in fCO2sw induced by SST changes was 0.4–0.75 times those resulting from variations in biology plus mixing. Along the meridional transect, fCO2sw normally decreased northwards (−12 μatm per degree latitude), but the gradient disappeared/reversed during spring as a consequence of an enhanced seasonal amplitude of fCO2sw in southern parts of the North Sea. Along the zonal transect, a weak gradient (−0.8 μatm per degree longitude) was observed in the mean annual fCO2sw. Annually and averaged over the study area, surface waters of the North Sea were CO2 undersaturated and thus a sink of atmospheric CO2 throughout the year. However, during summer, surface waters in the region 55.5–54.5° N were CO2 supersaturated and, hence, a source for atmospheric CO2. Comparison of fCO2sw data acquired within two 1°×1° regions in the northern and southern North Sea during different years (1987, 2001, 2002, and 2005–2007) revealed large interannual variations, especially during spring and summer when year-to-year fCO2sw differences (≈160–200 μatm) approached seasonal changes (≈200–250 μatm). The springtime variations resulted from changes in magnitude and timing of the phytoplankton bloom, whereas changes in SST, wind speed, and total alkalinity may have contributed to the summertime interannual fCO2sw differences. The lowest interannual variation (10–50 μatm) was observed during fall and early winter. The comparison with data reported in October 1967 suggests that the fCO2sw growth rate in the central North Sea is similar to that in the atmosphere.

Ocean Science ◽  
2010 ◽  
Vol 6 (1) ◽  
pp. 77-89 ◽  
Author(s):  
A. M. Omar ◽  
A. Olsen ◽  
T. Johannessen ◽  
M. Hoppema ◽  
H. Thomas ◽  
...  

Abstract. Data from two Voluntary Observing Ship (VOS) (2005–2007) augmented with data subsets from ten cruises (1987–2005) were used to investigate the spatiotemporal variations of the CO2 fugacity in seawater (fCO2sw) in the North Sea at seasonal and inter-annual time scales. The observed seasonal fCO2sw variations were related to variations in sea surface temperature (SST), biology plus mixing, and air-sea CO2 exchange. Over the study period, the seasonal amplitude in fCO2sw induced by SST changes was 0.4–0.75 times those resulting from variations in biology plus mixing. Along a meridional transect, fCO2sw normally decreased northwards (−12 μatm per degree latitude), but the gradient disappeared/reversed during spring as a consequence of an enhanced seasonal amplitude of fCO2sw in southern parts of the North Sea. Along a zonal transect, a weak gradient (−0.8 μatm per degree longitude) was observed in the annual mean fCO2sw. Annually and averaged over the study area, surface waters of the North Sea were CO2 undersaturated and, thus, a sink of atmospheric CO2. However, during summer, surface waters in the region 55.5–54.5° N were CO2 supersaturated and, hence, a source for atmospheric CO2. Comparison of fCO2sw data acquired within two 1°×1° regions in the northern and southern North Sea during different years (1987, 2001, 2002, and 2005–2007) revealed large interannual variations, especially during spring and summer when year-to-year fCO2sw differences (≈160–200 μatm) approached seasonal changes (≈200–250 μatm). The springtime variations resulted from changes in magnitude and timing of the phytoplankton bloom, whereas changes in SST, wind speed and total alkalinity may have contributed to the summertime interannual fCO2sw differences. The lowest interannual variation (10–50 μatm) was observed during fall and early winter. Comparison with data reported in October 1967 suggests that the fCO2sw growth rate in the central North Sea was similar to that in the atmosphere.


2009 ◽  
Vol 6 (2) ◽  
pp. 267-274 ◽  
Author(s):  
H. Thomas ◽  
L.-S. Schiettecatte ◽  
K. Suykens ◽  
Y. J. M. Koné ◽  
E. H. Shadwick ◽  
...  

Abstract. The coastal ocean is a crucial link between land, the open ocean and the atmosphere. The shallowness of the water column permits close interactions between the sedimentary, aquatic and atmospheric compartments, which otherwise are decoupled at long time scales (≅ 1000 yr) in the open oceans. Despite the prominent role of the coastal oceans in absorbing atmospheric CO2 and transferring it into the deep oceans via the continental shelf pump, the underlying mechanisms remain only partly understood. Evaluating observations from the North Sea, a NW European shelf sea, we provide evidence that anaerobic degradation of organic matter, fuelled from land and ocean, generates total alkalinity (AT) and increases the CO2 buffer capacity of seawater. At both the basin wide and annual scales anaerobic AT generation in the North Sea's tidal mud flat area irreversibly facilitates 7–10%, or taking into consideration benthic denitrification in the North Sea, 20–25% of the North Sea's overall CO2 uptake. At the global scale, anaerobic AT generation could be accountable for as much as 60% of the uptake of CO2 in shelf and marginal seas, making this process, the anaerobic pump, a key player in the biological carbon pump. Under future high CO2 conditions oceanic CO2 storage via the anaerobic pump may even gain further relevance because of stimulated ocean productivity.


2021 ◽  
Author(s):  
Mona Norbisrath ◽  
Jeannette Hansen ◽  
Kirstin Dähnke ◽  
Tina Sanders ◽  
Justus E. E. van Beusekom ◽  
...  

&lt;p&gt;The Elbe is the largest river entering the German Bight. Its estuary is a heavily used waterway connecting the sea to Germany&amp;#8217;s biggest port in Hamburg. The Elbe navigation channel is continuously dredged, and agricultural fertilizer input from the catchment ensuing large phytoplankton blooms in the river Elbe exerts additional anthropogenic pressure. Biogeochemistry in the estuary is additionally governed by the North Sea and its strong tidal cycles, which ensure an exchange of fresh and marine waters.&lt;/p&gt;&lt;p&gt;The aims were to quantify the release of the carbon species total alkalinity (TA) and dissolved inorganic carbon (DIC) along the Elbe estuary, and to estimate the contribution of aerobe and anaerobe metabolic processes. Therefore, we used water samples collected continuously during a cruise in June 2019, to measure TA and DIC, and the stable isotopes of nitrate. We applied mass balances, to characterize the metabolic activity and detect their effect on the carbon species&lt;/p&gt;&lt;p&gt;The Elbe estuary could be subdivided into two parts: 1) an outer marine driven part, which is dominated by conservative mixing, also visible in higher TA than DIC values, and 2) an inner fresh water part in which metabolic processes play an important role.&lt;/p&gt;&lt;p&gt;We found a strong increase in TA and DIC (several hundred &amp;#181;mol kg&lt;sup&gt;-1&lt;/sup&gt;) in the Hamburg port area, with higher DIC than TA values. We unraveled the water column impacts of nitrification and denitrification on TA and DIC by analyzing the stable isotopes &amp;#948;&lt;sup&gt;15&lt;/sup&gt;N-NO&lt;sub&gt;3&lt;/sub&gt;&lt;sup&gt;-&lt;/sup&gt; and &amp;#948;&lt;sup&gt;18&lt;/sup&gt;O-NO&lt;sub&gt;3&lt;/sub&gt;&lt;sup&gt;-&lt;/sup&gt;, and identified water column nitrification as a dominant pelagic process in the port of Hamburg and in the fresh water part further downstream. Because nitrification cannot explain the significant increase of TA and DIC in the port region, anaerobic processes such as denitrification in the sediment also appear to play an important role.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;


1896 ◽  
Vol 7 (3) ◽  
pp. 255
Author(s):  
H. N. Dickson

2004 ◽  
Vol 1 (2) ◽  
pp. 147-157 ◽  
Author(s):  
N. Gypens ◽  
C. Lancelot ◽  
A. V. Borges

Abstract. A description of the carbonate system has been incorporated in the MIRO biogeochemical model to investigate the contribution of diatom and Phaeocystis blooms to the seasonal dynamics of air-sea CO2 exchanges in the Eastern Channel and Southern Bight of the North Sea, with focus on the eutrophied Belgian coastal waters. For this application, the model was implemented in a simplified three-box representation of the hydrodynamics with the open ocean boundary box ‘Western English Channel’ (WCH) and the ‘French Coastal Zone’ (FCZ) and ‘Belgian Coastal Zone’ (BCZ) boxes receiving carbon and nutrients from the rivers Seine and Scheldt, respectively. Results were obtained by running the model for the 1996–1999 period. The simulated partial pressures of CO2 (pCO2) were successfully compared with data recorded over the same period in the central BCZ at station 330 (51°26.05′ N; 002°48.50′ E). Budget calculations based on model simulations of carbon flow rates indicated for BCZ a low annual sink of atmospheric CO2 (−0.17 mol C m-2 y-1). On the opposite, surface water pCO2 in WCH was estimated to be at annual equilibrium with respect to atmospheric CO2. The relative contribution of biological, chemical and physical processes to the modelled seasonal variability of pCO2 in BCZ was further explored by running model scenarios with separate closures of biological activities and/or river inputs of carbon. The suppression of biological processes reversed direction of the CO2 flux in BCZ that became, on an annual scale, a significant source for atmospheric CO2 (+0.53 mol C m-2 y-1). Overall biological activity had a stronger influence on the modelled seasonal cycle of pCO2 than temperature. Especially Phaeocystis colonies which growth in spring were associated with an important sink of atmospheric CO2 that counteracted the temperature-driven increase of pCO2 at this period of the year. However, river inputs of organic and inorganic carbon were shown to increase the surface water pCO2 and hence the emission of CO2 to the atmosphere. Same calculations conducted in WCH, showed that temperature was the main factor controlling the seasonal pCO2 cycle in these open ocean waters. The effect of interannual variations of fresh water discharge (and related nutrient and carbon inputs), temperature and wind speed was further explored by running scenarios with forcing typical of two contrasted years (1996 and 1999). Based on these simulations, the model predicts significant variations in the intensity and direction of the annual air-sea CO2 flux.


Author(s):  
Kélig Mahé ◽  
Elise Bellamy ◽  
Jean Paul Delpech ◽  
Coline Lazard ◽  
Michèle Salaun ◽  
...  

Weight–Body Length relationships (WLR) of 45 fish species (37 Actinopterygii and eight Elasmobranchii) were investigated. A total of 31,167 individuals were caught and their biological parameters measured during the four quarters from 2013 to 2015, on five scientific surveys sampling the North-eastern Atlantic Ocean from the North Sea to the Bay of Biscay (ICES Divisions IVb, IVc, VIId, VIIe, VIIg, VIIh, VIIj, VIIIa and VIIIb). Among 45 tested species, all showed a significant correlation between total length (L) and total weight (W). The influence of sex on WLR was estimated for 39 species and presented a significant sexual dimorphism for 18 species. Condition factor (K) of females was always higher than for males. Moreover, a spatial effect on the WLR according to five ecoregions (the Bay of Biscay, the Celtic Sea, the Western English Channel, the Eastern English Channel and the North Sea), was significant for 18 species among 38 tested species. The temporal effect was tested according to components (year and quarter/season). The seasonality effect on WLR is more frequently significant than the year especially for the Elasmobranchii species, and can be related to the spawning season. Finally, depressiform species (skates, sharks and flatfish) are characterized by positive allometric growth, whereas there is no such clear pattern regarding roundfishes growth, whatever their body shape is.


2021 ◽  
Author(s):  
Vlad Macovei ◽  
Yoana Voynova ◽  
Holger Brix ◽  
Wilhelm Petersen

&lt;p&gt;Surface seawater carbon dioxide partial pressure (pCO&lt;sub&gt;2&lt;/sub&gt;) in the North Sea, a large temperate shelf sea, was measured between 2014 and 2018 using FerryBox-integrated membrane sensors on ships of opportunity. The use of commercial vessels ensured a high spatio-temporal resolution, with data available year-round in areas belonging to all the stratification regime types found in the North Sea. Average annual cycles revealed a dominant biological control on pCO&lt;sub&gt;2&lt;/sub&gt; variability, with thermal effects modulating its amplitude. In the regions of freshwater influence, the biogeochemical characteristics of the riverine end-member also influenced the pCO&lt;sub&gt;2&lt;/sub&gt; measured near shore. Deseasonalized winter trends of seawater pCO&lt;sub&gt;2&lt;/sub&gt; were positive (ranging from 4.4 &amp;#177; 2.0 &amp;#181;atm yr&lt;sup&gt;-1&lt;/sup&gt; to 8.4 &amp;#177; 2.9 &amp;#181;atm yr&lt;sup&gt;-1&lt;/sup&gt; depending on the region), while the trends calculated including all deseasonalized monthly averages were even higher (ranging from 9.7 &amp;#177; 2.8 &amp;#181;atm yr&lt;sup&gt;-1&lt;/sup&gt; to 12.2 &amp;#177; 1.4 &amp;#181;atm yr&lt;sup&gt;-1&lt;/sup&gt;). All these trends were stronger than the atmospheric pCO&lt;sub&gt;2&lt;/sub&gt; trend. Consequently, during our study period, the southern North Sea became a stronger source and the northern North Sea became a weaker sink for atmospheric carbon with implications for the Northwestern European Shelf carbon uptake capacity.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document