scholarly journals Surface resistance calibration for a hydrological model using evapotranspiration retrieved from remote sensing data in Nahe catchment forest area

Author(s):  
W. Bie ◽  
M. C. Casper ◽  
P. Reiter ◽  
M. Vohland

Abstract. In this paper, a method combining graphical and statistical techniques is proposed for surface resistance calibration in a distributed hydrological model, WaSiM-ETH, by comparing daily evapotranspiration simulated by model WaSiM-ETH with corresponding daily evapotranspiration retrieved from remote sensing images. The study area locates in Nahe catchment (Rhineland-Palatinate, Germany, 4065 km2) forest regions. The remote sensing based observations are available for a very limited number of days but representative for most soil moisture conditions. By setting canopy resistance (rc) at 150 s/m, soil surface resistance (rse) at 250 s/m or at 300 s/m for deciduous forest and setting rc at 300 s/m, rse at 600 s/m or at 650 s/m for pine forest, the model exhibits its best overall performance in space and time. It is also found that with sufficient soil moisture, the model exhibits its best performance in space scale.

2017 ◽  
Author(s):  
Gorka Mendiguren ◽  
Julian Koch ◽  
Simon Stisen

Abstract. Distributed hydrological models are traditionally evaluated against discharge stations, emphasizing the temporal and neglecting the spatial component of a model. The present study widens the traditional paradigm by highlighting spatial patterns of evapotranspiration (ET), a key variable at the land-atmosphere interface, obtained from two different approaches at the national scale of Denmark. The first approach is based on a national water resources model (DK-model), using the MIKE-SHE model code, and the second approach utilizes a two source energy balance model (TSEB) driven mainly by satellite remote sensing data. The main hypothesis of the study is that while both approaches are essentially estimates, the spatial patterns of the remote sensing based approach are explicitly driven by observed land surface temperature and therefore represent the most direct spatial pattern information of ET; enabling its use for distributed hydrological model evaluation. Ideally the hydrological model simulation and remote sensing based approach should present similar spatial patterns and driving mechanism of ET. However, the spatial comparison showed that the differences are significant and indicating insufficient spatial pattern performance of the hydrological model. The differences in spatial patterns can partly be explained by the fact that the hydrological model is configured to run in 6 domains that are calibrated independently from each other, as it is often the case for large scale multi-basin calibrations. Furthermore, the model incorporates predefined temporal dynamics of Leaf Area Index (LAI), root depth (RD) and Crop coefficient (Kc) for each land cover type. This zonal approach of model parametrization ignores the spatio-temporal complexity of the natural system. To overcome this limitation, the study features a modified version of the DK-Model in which LAI, RD, and KC are empirically derived using remote sensing data and detailed soil property maps in order to generate a higher degree of spatio-temporal variability and spatial consistency between the 6 domains. The effects of these changes are analyzed by using the empirical orthogonal functions (EOF) analysis to evaluate spatial patterns. The EOF-analysis shows that including remote sensing derived LAI, RD and KC in the distributed hydrological model adds spatial features found in the spatial pattern of remote sensing based ET.


Water ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 666 ◽  
Author(s):  
Lihua Xiong ◽  
Ling Zeng

With the increased availability of remote sensing products, more hydrological variables (e.g., soil moisture and evapotranspiration) other than streamflow data are introduced into the calibration procedure of a hydrological model. However, how the incorporation of these hydrological variables influences the calibration results remains unclear. This study aims to analyze the impact of remote sensing soil moisture data in the joint calibration of a distributed hydrological model. The investigation was carried out in Qujiang and Ganjiang catchments in southern China, where the Dem-based Distributed Rainfall-runoff Model (DDRM) was calibrated under different calibration schemes where the streamflow data and the remote sensing soil moisture are assigned to different weights in the objective function. The remote sensing soil moisture data are from the SMAP L3 soil moisture product. The results show that different weights of soil moisture in the objective function can lead to very slight differences in simulation performance of soil moisture and streamflow. Besides, the joint calibration shows no apparent advantages in terms of streamflow simulation over the traditional calibration using streamflow data only. More studies including various remote sensing soil moisture products are necessary to access their effect on the joint calibration.


2019 ◽  
Vol 11 (2) ◽  
pp. 151 ◽  
Author(s):  
Dan Zhang ◽  
Xiaomang Liu ◽  
Peng Bai ◽  
Xiang-Hu Li

This study assesses the suitability of five popular satellite-based precipitation products in modeling water balance in a humid region of China during the period 1998–2012. The satellite-based precipitation products show similar spatial patterns with varying degrees of overestimation or underestimation, compared with the gauged precipitation. A distributed hydrological model is used to evaluate the suitability of satellite-based precipitation products in simulating streamflow, evapotranspiration and soil moisture. The simulations of streamflow and evapotranspiration forced by the MSWEP precipitation perform best among the five satellite-based precipitation products, where the Kling-Gupta efficiency (KGE) between the simulated and observed streamflow ranges from 0.75 to 0.91, and the KGE between the simulated and observed evapotranspiration ranges from 0.46 to 0.61. However, the KGE between the simulated and observed soil moisture is negative, indicating that the performance of soil moisture simulation forced by satellite-based precipitation is poor. In addition, this study finds the spatial pattern of simulated streamflow is dominated by the distribution of precipitation, whereas the distribution of evapotranspiration and soil moisture is controlled by the parameters of the hydrological model. This study is useful for the improvement of hydrological modeling based on remote sensing and the monitoring of regional water resources.


2020 ◽  
Author(s):  
Bagher Bayat ◽  
Christiaan van der Tol ◽  
Peiqi Yang ◽  
Carsten Montzka ◽  
Harry Vereecken ◽  
...  

<p>A radiative transfer and process-based model, called Soil-Canopy-Observation of Photosynthesis and Energy fluxes (SCOPE), relates remote sensing signals with plant functioning (i.e., evapotranspiration and photosynthesis). Relying on optical remote sensing data, the SCOPE model estimates evapotranspiration and photosynthesis, but these ecosystem-level fluxes may be significantly overestimated if water availability is the primary limiting factor for vegetation. Remedying this shortcoming, additional information from extra sources is needed. In this study, we propose considering water stress in SCOPE by incorporating soil moisture data in the model, besides using satellite optical reflectance observations. A functional link between soil moisture, soil surface resistance, leaf water potential, and carboxylation capacity is introduced as an extra element in SCOPE, resulting in a soil moisture integrated version of the model, SCOPE-SM. The modified model simulates additional state variables: (i) vapor pressure (e<sub>i</sub>), both in the soil pore space and leaf stomata in equilibrium with liquid water potential; (ii) the maximum carboxylation capacity (V<sub>cmax</sub>) by a soil moisture dependent stress factor; and (iii) the soil surface resistance (r<sub>ss</sub>) through approximation by a soil moisture dependent hydraulic conductivity. The new approach was evaluated at a Fluxnet site (US-Var) with dominant C3 grasses and covering a wet-to-dry episode from January to August 2004. By using the original SCOPE (version 1.61), we simulated half-hourly time steps of plant functioning via locally measured weather data and time series of Landsat (TM and ETM) imagery. Then, SCOPE-SM was similarly applied to simulate plant functioning for three cases using Landsat imagery: (i) with modeled e<sub>i</sub>; (ii) with modeled e<sub>i </sub>and V<sub>cmax; </sub>and (iii) with modeled e<sub>i</sub>, V<sub>cmax, </sub>and r<sub>ss</sub>. The outputs of all four simulations were compared to flux tower plant functioning measurements. The results indicate a significant improvement proceeding from the first to the fourth case in which we used both Landsat optical imagery and soil moisture data through SCOPE-SM. Our results show that the combined use of optical reflectance and soil moisture observations has great potential to capture variations of evapotranspiration and photosynthesis during drought episodes. Further, we found that the information contained in soil moisture observations can describe more variations of measured evapotranspiration compared to the information contained in thermal observations.</p>


2021 ◽  
Vol 13 (12) ◽  
pp. 2313
Author(s):  
Elena Prudnikova ◽  
Igor Savin

Optical remote sensing only provides information about the very thin surface layer of soil. Rainfall splash alters soil surface properties and its spectral reflectance. We analyzed the impact of rainfall on the success of soil organic matter (SOM) content (% by mass) detection and mapping based on optical remote sensing data. The subject of the study was the arable soils of a test field located in the Tula region (Russia), their spectral reflectance, and Sentinel-2 data. Our research demonstrated that rainfall negatively affects the accuracy of SOM predictions based on Sentinel-2 data. Depending on the average precipitation per day, the R2cv of models varied from 0.67 to 0.72, RMSEcv from 0.64 to 1.1% and RPIQ from 1.4 to 2.3. The incorporation of information on the soil surface state in the model resulted in an increase in accuracy of SOM content detection based on Sentinel-2 data: the R2cv of the models increased up to 0.78 to 0.84, the RMSEcv decreased to 0.61 to 0.71%, and the RPIQ increased to 2.1 to 2.4. Further studies are necessary to identify how the SOM content and composition of the soil surface change under the influence of rainfall for other soils, and to determine the relationships between rainfall-induced SOM changes and soil surface spectral reflectance.


Sign in / Sign up

Export Citation Format

Share Document