scholarly journals Twenty years of research on spent nuclear fuel in the context of final disposal at KIT-INE in multinational collaborative projects

2021 ◽  
Vol 1 ◽  
pp. 237-238
Author(s):  
Michel Herm ◽  
Elke Bohnert ◽  
Luis Iglesias Pérez ◽  
Tobias König ◽  
Volker Metz ◽  
...  

Abstract. Disposal of spent nuclear fuel (SNF) in deep geological repositories is considered a preferential option for the management of such wastes in many countries with nuclear power plants. With the aim to permanently and safely isolate the radionuclide inventory from the biosphere for a sufficient time, a multibarrier system consisting of technical, geotechnical and geological barriers is interposed between the emplaced waste and the environment. In safety assessments for deep underground repositories, access of water, followed by failure of canisters and finally loss of the cladding integrity is considered in the long-term. Hence, evaluating the performance of SNF in deep geological disposal systems requires process understanding of SNF dissolution and rates as well as quantification of radionuclides release from SNF under reducing conditions of a breached container. In order to derive a radionuclide source term, the SNF dissolution and alteration processes can be assigned to two steps: (i) instantaneous release of radionuclides upon cladding failure from gap and grain boundaries and (ii) a long-term release that results from dissolution of the fuel grains itself (Ewing, 2015). In this context, research at KIT-INE has focused for more than 20 years on the behavior of SNF (irradiated UO2 and MOX fuels) under geochemical conditions (pH, redox and ionic strength) representative of various repository concepts, including the interaction of SNF with backfill material, such as bentonite as well as the influence of iron corrosion products, e.g. magnetite and radiolytic reactions on SNF dissolution mechanisms. Since 2001, KIT-INE has contributed with experimental and theoretical studies on the behavior of SNF under repository relevant conditions to six Euratom projects viz SFS (2001–2004), NF-PRO (2004–2006), MICADO (2006–2009), RECOSY (2007–2011), FIRST-Nuclides (2012–2014) and DISCO (2016–2021). Moreover, since 2007, overall 4 consecutive projects for the Belgian waste management organization, ONDRAF-NIRAS, were performed on the behavior of SNF under conditions representative of the Belgian “Supercontainer” concept. In this contribution, we summarize major achievements of theses research projects to understand and quantify the radionuclide release from dissolving SNF under repository conditions. In particular, the dependence of radionuclide release on the chemical composition of the aqueous and gaseous phase in the proximity of repositories in different types of host rock is discussed.

MRS Advances ◽  
2016 ◽  
Vol 1 (61) ◽  
pp. 4075-4080
Author(s):  
Fredrik Vahlund

ABSTRACTSince 1988 the Swedish Nuclear Fuel and Waste Management Co. operates a repository for low- and intermediate-level short-lived radioactive waste, SFR, in Forsmark, Sweden. Due to decommissioning of the nuclear power plants additional storage capacity is needed. In December 2014, an application to extend the repository was therefore submitted. One key component of this application was an assessment of post-closure safety of the extended SFR. For this safety assessment, a methodology based on that developed by SKB for the spent nuclear fuel repository was used and the impact of the degradation of repository components, the evolution of the surface system and changes of future climate on the radiological safety of the repository was assessed over a period of 100,000 years. The central conclusion of the SR-PSU safety assessment is that the extended SFR repository meets requirements on protection of human health and of the environment that have been established by the Swedish radiation safety authority for the final disposal of radioactive waste. Furthermore, the design of the repository was shown suitable for the waste selected and the applied methodology suitable for the safety assessment.


2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Mats Jonsson

Safe long-term storage of radioactive waste from nuclear power plants is one of the main concerns for the nuclear industry as well as for governments in countries relying on electricity produced by nuclear power. A repository for spent nuclear fuel must be safe for extremely long time periods (at least 100 000 years). In order to ascertain the long-term safety of a repository, extensive safety analysis must be performed. One of the critical issues in a safety analysis is the long-term integrity of the barrier materials used in the repository. Ionizing radiation from the spent nuclear constitutes one of the many parameters that need to be accounted for. In this paper, the effects of ionizing radiation on the integrity of different materials used in a granitic deep geological repository for spent nuclear fuel designed according to the Swedish KBS-3 model are discussed. The discussion is primarily focused on radiation-induced processes at the interface between groundwater and solid materials. The materials that are discussed are the spent nuclear fuel (based on UO2), the copper-covered iron canister, and bentonite clay. The latter two constitute the engineered barriers of the repository.


2020 ◽  
pp. 62-71
Author(s):  
M. Sapon ◽  
O. Gorbachenko ◽  
S. Kondratyev ◽  
V. Krytskyy ◽  
V. Mayatsky ◽  
...  

According to regulatory requirements, when carrying out handling operations with spent nuclear fuel (SNF), prevention of damage to the spent fuel assemblies (SFA) and especially fuel elements shall be ensured. For this purpose, it is necessary to exclude the risk of SFA falling, SFA uncontrolled displacements, prevent mechanical influences on SFA, at which their damage is possible. Special requirements for handling equipment (in particular, cranes) to exclude these dangerous events, the requirements for equipment strength, resistance to external impacts, reliability, equipment design solutions, manufacturing quality are analyzed in this work. The requirements of Ukrainian and U.S. regulatory documents also are considered. The implementation of these requirements is considered on the example of handling equipment, in particular, spent nuclear fuel storage facilities. This issue is important in view of creation of new SNF storage facilities in Ukraine. These facilities include the storage facility (SFSF) for SNF from water moderated power reactors (WWER): a Сentralized SFSF for storing SNF of Rivne, Khmelnitsky and South-Ukraine Nuclear Power Plants (СSFSF), and SFSF for SNF from high-power channel reactors (RBMK): a dry type SFSF at Chornobyl nuclear power plant (ISF-2). After commissioning of these storage facilities, all spent nuclear fuel from Ukrainian nuclear power plants will be placed for long-term “dry” storage. The safety of handling operations with SNF during its preparation for long-term storage is an important factor.


2020 ◽  
Vol 18 (10) ◽  
pp. 1807-1816
Author(s):  
Claudir Jose Nodari ◽  
Pedro Luiz da Cruz Saladanha ◽  
Gladson Silva Fontes

Author(s):  
Krista Nicholson ◽  
John McDonald ◽  
Shona Draper ◽  
Brian M. Ikeda ◽  
Igor Pioro

Currently in Canada, spent fuel produced from Nuclear Power Plants (NPPs) is in the interim storage all across the country. It is Canada’s long-term strategy to have a national geologic repository for the disposal of spent nuclear fuel for CANada Deuterium Uranium (CANDU) reactors. The initial problem is to identify a means to centralize Canada’s spent nuclear fuel. The objective of this paper is to present a solution for the transportation issues that surround centralizing the waste. This paper reviews three major components of managing and the transporting of high-level nuclear waste: 1) site selection, 2) containment and 3) the proposed transportation method. The site has been selected based upon several factors including proximity to railways and highways. These factors play an important role in the site-selection process since the location must be accessible and ideally to be far from communities. For the containment of the spent fuel during transportation, a copper-shell container with a steel structural infrastructure was selected based on good thermal, structural, and corrosion resistance properties has been designed. Rail has been selected as the method of transporting the container due to both the potential to accommodate several containers at once and the extensive railway system in Canada.


2014 ◽  
Vol 56 (5) ◽  
pp. 501-514 ◽  
Author(s):  
N. D. Goletskii ◽  
B. Ya. Zilberman ◽  
Yu. S. Fedorov ◽  
A. S. Kudinov ◽  
A. A. Timoshuk ◽  
...  

1996 ◽  
Vol 465 ◽  
Author(s):  
C. W. Forsberg

ABSTRACTA new repository waste package (WP) concept for spent nuclear fuel (SNF) is being investigated. The WP uses depleted uranium (DU) to improve performance and reduce the uncertainties of geological disposal of SNF. The WP would be loaded with SNF. Void spaces would then be filled with DU (∼0.2 wt % 235U) dioxide (UO2) or DU silicate-glass beads.Fission products and actinides can not escape the SNF UO2 crystals until the UO2 dissolves or is transformed into other chemical species. After WP failure, the DU fill material slows dissolution by three mechanisms: (1) saturation of WP groundwater with DU and suppression of SNF dissolution, (2) maintenance of chemically reducing conditions in the WP that minimize SNF solubility by sacrificial oxidation of DU from the +4 valence state, and (3) evolution of DU to lower-density hydrated uranium silicates. The fill expansion minimizes water flow in the degraded WP. The DU also isotopically exchanges with SNF uranium as the SNF degrades to reduce long-term nuclear-criticality concerns.


Sign in / Sign up

Export Citation Format

Share Document