scholarly journals Claystone formations in Germany: what we (don't) know about them and how we can change this

2021 ◽  
Vol 1 ◽  
pp. 47-48
Author(s):  
Bernhard Schuck ◽  
Tilo Kneuker

Abstract. Deep geological formations are considered for safe long-term disposal of high-level radioactive waste. Such a repository would be requested to prevent radionuclides from entering the biosphere for a period of 1 million years (StandAG, 2017). Consequently, a holistic characterization including lithological, mineralogical, geochemical, hydrological, structural and geomechanical properties of any potential repository-hosting rock formation is required. Nine claystone formations have been identified as “sub-areas” within the German site-selection procedure (BGE, 2020). The area covered by these formations comprises about half of the total area considered as being qualified for further exploration. However, despite its relevance to act as a geological barrier for, e.g. hydrocarbons or radionuclides, the characterization of clay-rich formations at depths exceeding 300 m in Germany has attained substantially less attention than economically more relevant units hosted by, e.g. sandstones or rock salt, which have been intensively explored. The BGR project BASTION aims at contributing to characterizing these claystone formations and emphasizes properties relevant to host a repository for nuclear waste. Investigations comprise (micro)structural/petrographic, mineralogical, geochemical, geophysical, hydraulic and thermomechanical analyses. In project phase I (2013–2019), claystones deposited in Northern Germany during the Lower Cretaceous were studied. These rocks belong to the fourth largest sub-area hosting claystones. Two of the main foci were to explore variations in lithology, mineralogy and geochemistry, and to identify deformation mechanisms (natural and artificial) by microstructural analyses. Although rocks appeared to be quite homogeneous on the 10–100 m scale, the results revealed distinct structural and sedimentary heterogeneities on the meter scale affecting fracture density. Another sub-area located in Southern Germany hosts the Opalinus Clay Formation (OPA). This up to 150 m thick claystone formation was deposited during the Middle Jurassic (Franz and Nitsch, 2009). Owing to its self-sealing capacity and ability to retain fluids, it is supposed to host the nuclear waste repository of Switzerland (Bossart et al., 2017). The OPA is quite well understood in terms of its lithology and (bio)stratigraphy, and there have been mineralogical, hydrological and petrophysical analyses, mostly documented in university theses a few decades old and sometimes difficult to access. However, it is questionable to what extent these investigations reflect the situation at depths relevant for the site-selection procedure. Well-documented data on the OPA and its properties relevant for nuclear waste disposal are available via the Swiss site-selection procedure (Bossart et al., 2017). However, as there remain substantial questions regarding the nature of the German portions of the OPA (e.g. spatial distribution of lithology, mineralogy, microstructures) at depths greater than a few decameters, it is unclear to what degree insights obtained in the Swiss site-selection procedure also account for Germany. Therefore, phase II of BASTION, which began in 2020, aims to use the multidisciplinary approach developed during phase I to characterize properties of the OPA relevant for the save long-term disposal of nuclear waste by identifying and quantifying structural and rheological heterogeneities. This will constitute important input for numerical models in any long-term safety assessment.

2021 ◽  
Vol 1 ◽  
pp. 45-46
Author(s):  
Sönke Reiche ◽  
Reinhard Fink ◽  
Nils-Peter Nilius

Abstract. After implementation of the Repository Site Selection Act (StandAG) in 2017, the Federal Company for Radioactive Waste Disposal (BGE), as the German waste management organization, started the site selection procedure for a nuclear repository for high-level radioactive waste in Germany. On the way towards the repository site with the best possible safety, the site selection procedure is required to be a participatory, transparent, learning and self-questioning process based on scientific expertise. With the Subareas Interim Report published in 2020, first results were presented outlining subareas with favourable geological conditions in preparation for defining the siting regions for surface exploration. Currently, one of the main tasks in the site selection procedure is to establish a detailed geoscientific synthesis (Geosynthesis) for each subarea. The Geosynthesis contains all geological information for the characterization of each subarea and hence serves as the foundation for the subsequent analysis within the representative preliminary safety assessments (rvSU) and the geoscientific consideration criteria. Based on this information, all areas within the subareas will be evaluated to find the siting regions for surface exploration. The Geosynthesis includes a description of the regional geology focusing on the host rock, the overburden and relevant geological processes that may affect the potential nuclear waste repository in the next 1 million years. The data for the Geosynthesis are mostly compiled from state authorities and include 3-D geologic models, regional maps and cross-sections, bore hole data (e.g. geophysical logs) and seismic data. Furthermore, it is necessary to digitize, process, interpret and evaluate the aforementioned data using the available knowledge from the scientific literature in the context of the site selection procedure.


2021 ◽  
Author(s):  
Vanessa Montoya ◽  
Jaime Garibay-Rodriguez ◽  
Olaf Kolditz

<p>By 2080, Germany will have to store around 600 000 m<sup>3</sup> of low and intermediate-level nuclear waste (L-ILW) with negligible heat generation. This kind of waste is largely made up of used parts of nuclear power stations such as pumps, pipelines, filters, etc. placed in various types of waste containers made from either steel, cast iron, or reinforced concrete in different designs and sizes (i.e. cylindrical or box shaped). It is already decided that a total of 303 000 of the 600 000 m<sup>3</sup> L-ILW will be disposed in a final storage facility in the former iron ore mine Schacht Konrad which is under construction. However, it is still not clear where the L-ILW emplaced in in the old salt mine Asse (200 000 m<sup>3</sup>) will be stored in the future. The situation is particularly critical, as the waste have to be retrieved from the instable mine shafts partially flooded with groundwater, causing strong socio-political concerns as radioactive waste could contaminate the water nearby. For this reason, the new search for a nuclear waste repository for high-level waste (HLW), started in 2017, should also consider the possibility to accommodate the waste from Asse. Obviously, this is still subject to critics as this will make finding a final repository more difficult as storing HLW and L-ILW together requires different concepts and designs for each other and, above all, much more space.</p><p>In this context, in this contribution we have defined conceptual and numerical models to assess the hydro-chemical evolution of a L-ILW disposal cell in indurated clay rocks, involving the interaction of different components/materials and the expected hydraulic and/or chemical gradients over 100 000 years. The L-ILW disposal cell leverages a multi-barrier concept buried 400 m below the surface. The multi-barrier system is comprised of the waste matrix (i.e. backfilling the waste drums), the disposal container, the mortar backfill in the emplacement tunnel (where the disposal containers are located) and the clay host rock. The dimensions and design of the emplacement tunnel (e.g. 11 × 13 m) and disposal cells represent and consider some aspects taken into account in the designs of some European countries. In addition, tunnel walls reinforced with a shotcrete liner and the Excavation Damaged Zone is considered in the concept. The model is implemented in OpenGeoSys-6, an open-source version-controlled scientific software based on Finite Element Method which is capable of handling fully coupled hydro-chemical models by coupling OpenGeoSys to iPHREEQC. First calculation results, demonstrate that the most important processes affecting the near-field chemical evolution are i) the degradation of the concrete and cementitious grouts with porewater migrating inwards from the host rock and ii) the significant quantities of reactive and non-reactive gases (i.e. hydrogen, carbon dioxide and methane) that are generated as a result of: i) the anaerobic corrosion of metals present in the waste and containers and ii) the degradation of organic compounds by microbial and chemical processes. As a first approximation, some assumptions and simplifications have been considered, probably resulting in a wort case scenario.</p>


2010 ◽  
Vol 1265 ◽  
Author(s):  
Jean-Francois Lucchini ◽  
Hnin Khaing ◽  
Donald T. Reed

AbstractWhen present, uranium is usually an element of importance in a nuclear waste repository. In the Waste Isolation Pilot Plant (WIPP), uranium is present in significant quantities, with about 647 metric tons to be placed in the repository [1]. Therefore, the chemistry of uranium, and especially its solubility, needs to be determined under WIPP-relevant conditions.Long-term experiments were performed to measure the solubility of uranium (VI) in carbonate-free ERDA-6 brine, a simulated WIPP brine, at pCH+ values between 8 and 12.5. These data, obtained from the over-saturation approach, were the first WIPP repository-relevant data for the VI actinide oxidation state. The solubility trends observed pointed towards low uranium solubility in WIPP brine and a lack of amphotericity. At the expected pCH+ in the WIPP (˜ 9.5), measured uranium solubility approached 10-7 M. The objective of these experiments was to establish a baseline solubility to further investigate the effects of carbonate complexation on uranium solubility in WIPP brines, during the ongoing research program in actinide solubility under WIPP-relevant conditions.


1990 ◽  
Vol 212 ◽  
Author(s):  
D. E. Grandstaff ◽  
V. J. Grassi ◽  
A. C. Lee ◽  
G. C. Ulmer

ABSTRACTSystematic differences in pH, cation/proton ion activity ratios, and redox have been observed between solutions produced in rock-water hydrothermal experiments with tuff, granite, and basalt. Stable pH values in tuff-water experiments may be as much as 1.5 pH units more acidic than basalt-water experiments at the same temperature and ionic strength. Redox (log fO2) values in 300°C tuff experiments are 4–7 orders of magnitude more oxidizing than basalt experiments and ca. 4 log units more oxidizing than the magnetite-hematite buffer. Such fluid differences could significantly affect the performance of a high-level nuclear waste repository and should be considered in repository design and siting.


2003 ◽  
Vol 807 ◽  
Author(s):  
Hiroyuki Tsuchi ◽  
Masanori Kobayashi ◽  
Hirofumi Kondo ◽  
Akihisa Koike ◽  
Hiroki Hatamoto ◽  
...  

ABSTRACTThe Nuclear Waste Management Organization of Japan (NUMO) has developed a set of “Siting Factors (SFs)” to guide choice of preliminary investigation areas (PIAs) of HLW disposal. A call for municipalities to volunteer PIAs was initiated, which included published SFs, in December 2002 as the first stage of a stepwise site selection procedure. This paper describes the way that SFs were developed and the outlines how they will be applied.


Sign in / Sign up

Export Citation Format

Share Document