scholarly journals Inversion tectonics: a brief petroleum industry perspective

2020 ◽  
Author(s):  
Gábor Tari ◽  
Didier Arbouille ◽  
Zsolt Schléder ◽  
Tamás Tóth

Abstract. The concept of structural inversion was introduced in the early 1980s. By definition, an inversion structure forms when a pre-existing extensional (or transtensional) fault controlling a hangingwall basin containing a syn-rift or passive fill sequence subsequently undergoes compression (or transpression) producing partial (or total) extrusion of the basin fill. Inverted structures provide traps for petroleum exploration, typically four-way structural closures. As to the degree of inversion, based on large number of worldwide examples seen in various basins, the most preferred petroleum exploration targets are mild to moderate inversional structures, defined by the location of the null-points. In these instances, the closures have a relatively small vertical amplitude, but simple in a map-view sense and well imaged on seismic reflection data. Also, the closures typically cluster above the extensional depocentres which tend to contain source rocks providing petroleum charge during and after the inversion. Cases for strong or total inversion are generally not that common and typically are not considered as ideal exploration prospects, mostly due to breaching and seismic imaging challenges associated with the trap(s) formed early on in the process of inversion. Also, migration may become tortuous due to the structural complexity or the source rock units may be uplifted above the hydrocarbon generation window effectively terminating the charge once the inversion occurred. For any particular structure the evidence for inversion is typically provided by subsurface data sets such as reflection seismic and well data. However, in many cases the deeper segments of the structure are either poorly imaged by the seismic data and/or have not been penetrated by exploration wells. In these cases the interpretation of any given structure in terms of inversion has to rely on the regional understanding of the basin evolution with evidence for an early phase of substantial crustal extension by normal faulting.

Solid Earth ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 1865-1889 ◽  
Author(s):  
Gábor Tari ◽  
Didier Arbouille ◽  
Zsolt Schléder ◽  
Tamás Tóth

Abstract. Inverted structures provide traps for petroleum exploration, typically four-way structural closures. As to the degree of inversion, based on a large number of worldwide examples seen in various basins, the most preferred petroleum exploration targets are mild to moderate inversion structures, defined by the location of the null points. In these instances, the closures have a relatively small vertical amplitude but are simple in a map-view sense and well imaged on seismic reflection data. Also, the closures typically cluster above the extensional depocenters which tend to contain source rocks providing petroleum charge during and after the inversion. Cases for strong or total inversion are generally not that common and typically are not considered as ideal exploration prospects, mostly due to breaching and seismic imaging challenges associated with the trap(s) formed early on in the process of inversion. Also, migration may become tortuous due to the structural complexity or the source rock units may be uplifted above the hydrocarbon generation window, effectively terminating the charge once the inversion has occurred. Cases of inversion tectonics can be grouped into two main modes. A structure develops in Mode I inversion if the syn-rift succession in the preexisting extensional basin unit is thicker than its post-rift cover including the pre- and syn-inversion part of it. In contrast, a structure evolves in Mode II inversion if the opposite syn- versus post-rift sequence thickness ratio can be observed. These two modes have different impacts on the petroleum system elements in any given inversion structure. Mode I inversion tends to develop in failed intracontinental rifts and proximal passive margins, and Mode II structures are associated with back-arc basins and distal parts of passive margins. For any particular structure the evidence for inversion is typically provided by subsurface data sets such as reflection seismic and well data. However, in many cases the deeper segments of the structure are either poorly imaged by the seismic data and/or have not been penetrated by exploration wells. In these cases the interpretation in terms of inversion has to rely on the regional understanding of the basin evolution with evidence for an early phase of crustal extension by normal faulting.


2021 ◽  

The most utilized technique for exploring the Earth's subsurface for petroleum is reflection seismology. However, a sole focus on reflection seismology often misses opportunities to integrate other geophysical techniques such as gravity, magnetic, resistivity, and other seismicity techniques, which have tended to be used in isolation and by specialist teams. There is now growing appreciation that these technologies used in combination with reflection seismology can produce more accurate images of the subsurface. This book describes how these different field techniques can be used individually and in combination with each other and with seismic reflection data. World leading experts present chapters covering different techniques and describe when, where, and how to apply them to improve petroleum exploration and production. It also explores the use of such techniques in monitoring CO2 storage reservoirs. Including case studies throughout, it will be an invaluable resource for petroleum industry professionals, advanced students, and researchers.


2014 ◽  
Vol 54 (2) ◽  
pp. 520
Author(s):  
Francois Bache ◽  
Vaughan Stagpoole ◽  
Rupert Sutherland ◽  
Julien Collot ◽  
Pierrick Rouillard ◽  
...  

The Fairway Basin lies between Australia and New Caledonia in the northern Tasman Frontier area with water depths ranging from less than 1,000–2,400 m. This basin was formed in the mid-to-late Cretaceous during the eastern Gondwana breakup and since then has received detrital and pelagic sediments. It is known for its 70,000 km2 bottom simulating reflector, interpreted as one of the world’s largest gas hydrate layers or as a regional diagenetic front. The seismic reflection data shows sedimentary thicknesses (up to 4 km) and geometries capable of trapping hydrocarbons. The authors interpreted the seismic stratigraphy and available well data in terms of paleogeography and tectonic evolution. This work allowed the discovery of a deeply buried delta, probably of the same type as the deep-water Taranaki Delta. This stratigraphic framework is used to constrain multi-1D generation modelling and to test three main hypotheses of source rocks. The most likely scenario, similar to the one accepted for the Taranaki petroleum province, are a type-III and type-II source rocks intercalated in a Cretaceous prograding series. Another possible scenario is a source rock equivalent to the east Australian Walloon Formation and the occurrence of the marine source rock in the pre-rift sequence. Although, the large modelled volumes at this stage are speculative due to limited data on source rock composition, richness and distribution, as well as on the presence and quality of reservoir and seal, this study confirms the prospectivity of the Fairway Basin and the need for more data to further assess this basin.


2010 ◽  
Vol 50 (2) ◽  
pp. 726 ◽  
Author(s):  
Lidena Carr ◽  
Russell Korsch ◽  
Leonie Jones ◽  
Josef Holzschuh

The onshore energy security program, funded by the Australian Government and conducted by Geoscience Australia, has acquired deep seismic reflection data across several frontier sedimentary basins to stimulate petroleum exploration in onshore Australia. Detailed interpretation of deep seismic reflection profiles from four onshore basins, focussing on overall basin geometry and internal sequence stratigraphy, will be presented here, with the aim of assessing the petroleum potential of the basins. At the southern end of the exposed part of the Mt Isa Province, northwest Queensland, a deep seismic line (06GA–M6) crosses the Burke River structural zone of the Georgina Basin. The basin here is >50 km wide, with a half graben geometry, and bounded in the west by a rift border fault. Given the overall architecture, this basin will be of interest for petroleum exploration. The Millungera Basin in northwest Queensland is completely covered by the thin Eromanga Basin and was unknown prior to being detected on two seismic lines (06GA–M4 and 06GA–M5) acquired in 2006. Following this, seismic line 07GA–IG1 imaged a 65 km wide section of the basin. The geometry of internal stratigraphic sequences and a post-depositional thrust margin indicate that the original succession was much thicker than preserved today and may have potential for a petroleum system. The Yathong Trough, in the southeast part of the Darling Basin in NSW, has been imaged in seismic line 08GA–RS2 and interpreted in detail using sequence stratigraphic principles, with several sequences being mapped. Previous studies indicate that the upper part of this basin consists of Devonian sedimentary rocks, with potential source rocks at depth. In eastern South Australia, seismic line 08GA–A1 crossed the Cambrian Arrowie Basin, which is underlain by a Neoproterozoic succession of the Adelaide Rift System. Stratigraphic sequences have been mapped and can be tied to recent drilling for mineral and geothermal exploration. Shallow drill holes from past petroleum exploration have aided the assessment of the petroleum potential of the Cambrian Hawker Group, which contains bitumen in the core, indicating the presence of source rocks in the basin system.


2021 ◽  
pp. petgeo2021-003
Author(s):  
Laura-Jane C. Fyfe ◽  
Nick Schofield ◽  
Simon Holford ◽  
Adrian Hartley ◽  
Adrian Heafford ◽  
...  

The Sea of Hebrides Basin and Minch Basin are late Palaeozoic-Mesozoic rift basins located to the northwest of the Scottish mainland. The basins were the target of small-scale petroleum exploration from the late 1960s to the early 1990s, with a total of three wells drilled within the two basins between 1989 and 1991. Although no commercially viable petroleum discoveries were made, numerous petroleum shows were identified within both basins, including a gas show within the Upper Glen 1 well in Lower Jurassic limestones. Organic rich shales have been identified throughout the Jurassic succession within the Sea of Hebrides Basin, with one Middle Jurassic (Bajocian-Bathonian) shale exhibiting a Total Organic Carbon content of up to 15 wt%. The focus of this study is to review the historic petroleum exploration within these basins, and to evaluate whether the conclusions drawn in the early 1990s of a lack of prospectivity remains the case. This was undertaken by analysis of seismic reflection data, gravity and aeromagnetic data and sedimentological data, from both onshore and offshore wells, boreholes and previously published studies. The key findings from our study suggest that there is a low probability of commercially sized petroleum accumulations within either the Sea of Hebrides Basin or the Minch Basin. Ineffective source rocks, likely due to low maturities (due to lack of burial) and the fact that the encountered Jurassic and Permian-Triassic reservoirs are of poor quality (low porosity and permeability) has led to our interpretation of future exploration being high risk, with any potential accumulations being small in size. While petroleum accumulations are unlikely within the basin, applying the knowledge obtained from the study could provide additional datasets and insight into petroleum exploration on other northeast Atlantic margin basins, such as the Rockall Trough and the Faroe-Shetland Basin.


2014 ◽  
Vol 54 (2) ◽  
pp. 537
Author(s):  
Pierrick Rouillard ◽  
Julien Collot ◽  
Francois Bache ◽  
Rupert Sutherland ◽  
Karsten Kroeger ◽  
...  

The Fairway Basin lies between Australia and New Caledonia in the northern Tasman Frontier area with water depths ranging from less than 1,000–2,400 m. This basin formed in mid-to-Late Cretaceous during eastern Gondwana breakup and received detrital and pelagic sediments since that time. It is known for a 70,000 km2 bottom simulating reflector interpreted as either one of the world’s largest gas hydrate layers or as a regional diagenetic front. Seismic reflection data shows sedimentary thicknesses (up to 4 km) and geometries capable of trapping hydrocarbons. We interpret seismic stratigraphy and available well data in terms of paleogeography and tectonic evolution. This work allowed the discovery of a deeply buried delta probably of the same type as the deepwater Taranaki Delta. This stratigraphic framework is used to constrain multi-1D generation modelling and to test three main hypotheses of source rocks. The most likely scenario, similar to the one accepted for the Taranaki petroleum province, are a type-III and type-II source rocks intercalated in Cretaceous prograding series. Another possible scenario is a source rock equivalent to the East Australian Walloon Formation and occurrence of marine source rock in the pre-rift sequence. Although large modelled volumes at this stage are speculative due to limited data on source rock composition, richness and distribution, as well as on the presence and quality of reservoir and seal, this study confirms the prospectivity of the Fairway Basin and the need for more data to further assess this basin.


Geophysics ◽  
2001 ◽  
Vol 66 (3) ◽  
pp. 845-860 ◽  
Author(s):  
François Clément ◽  
Guy Chavent ◽  
Susana Gómez

Migration‐based traveltime (MBTT) formulation provides algorithms for automatically determining background velocities from full‐waveform surface seismic reflection data using local optimization methods. In particular, it addresses the difficulty of the nonconvexity of the least‐squares data misfit function. The method consists of parameterizing the reflectivity in the time domain through a migration step and providing a multiscale representation for the smooth background velocity. We present an implementation of the MBTT approach for a 2-D finite‐difference (FD) full‐wave acoustic model. Numerical analysis on a 2-D synthetic example shows the ability of the method to find much more reliable estimates of both long and short wavelengths of the velocity than the classical least‐squares approach, even when starting from very poor initial guesses. This enlargement of the domain of attraction for the global minima of the least‐squares misfit has a price: each evaluation of the new objective function requires, besides the usual FD full‐wave forward modeling, an additional full‐wave prestack migration. Hence, the FD implementation of the MBTT approach presented in this paper is expected to provide a useful tool for the inversion of data sets of moderate size.


2018 ◽  
Vol 123 (12) ◽  
pp. 10,810-10,830
Author(s):  
Michael Dentith ◽  
Huaiyu Yuan ◽  
Ruth Elaine Murdie ◽  
Perla Pina-Varas ◽  
Simon P. Johnson ◽  
...  

Geophysics ◽  
1998 ◽  
Vol 63 (4) ◽  
pp. 1395-1407 ◽  
Author(s):  
Frank Büker ◽  
Alan G. Green ◽  
Heinrich Horstmeyer

Shallow seismic reflection data were recorded along two long (>1.6 km) intersecting profiles in the glaciated Suhre Valley of northern Switzerland. Appropriate choice of source and receiver parameters resulted in a high‐fold (36–48) data set with common midpoints every 1.25 m. As for many shallow seismic reflection data sets, upper portions of the shot gathers were contaminated with high‐amplitude, source‐generated noise (e.g., direct, refracted, guided, surface, and airwaves). Spectral balancing was effective in significantly increasing the strength of the reflected signals relative to the source‐generated noise, and application of carefully selected top mutes ensured guided phases were not misprocessed and misinterpreted as reflections. Resultant processed sections were characterized by distributions of distinct seismic reflection patterns or facies that were bounded by quasi‐continuous reflection zones. The uppermost reflection zone at 20 to 50 ms (∼15 to ∼40 m depth) originated from a boundary between glaciolacustrine clays/silts and underlying glacial sands/gravels (till) deposits. Of particular importance was the discovery that the deepest part of the valley floor appeared on the seismic section at traveltimes >180 ms (∼200 m), approximately twice as deep as expected. Constrained by information from boreholes adjacent to the profiles, the various seismic units were interpreted in terms of unconsolidated glacial, glaciofluvial, and glaciolacustrine sediments deposited during two principal phases of glaciation (Riss at >100 000 and Würm at ∼18 000 years before present).


2021 ◽  
pp. 1-25
Author(s):  
Rashed Abdullah ◽  
Md. Shahadat Hossain ◽  
Md. Soyeb Aktar ◽  
Md. Soyeb Aktar ◽  
Mohammad Moinul Hossain ◽  
...  

The Bengal Basin accommodates an extremely thick Cenozoic sedimentary succession that derived from the uplifted Himalayan and Indo-Burman Orogenic Belts in response to the subduction of the Indian Plate beneath the Eurasian and Burmese plates. The Hatia Trough is a proven petroleum province that occupies much of the southern Bengal Basin. However, the style of deformation, kinematics, and possible timing of structural initiation in the Hatia Trough and the relationship of this deformation to the frontal fold-thrust system in the outer wedge (namely, the Chittagong Tripura Fold Belt) of the Indo-Burman subduction system to the east are largely unknown. Therefore, we carried out a structural interpretation across the eastern Hatia Trough and western Chittagong Tripura Fold Belt based on 2D seismic reflection data. Our result suggests that the syn-kinematic packages correspond to the Pliocene Tipam Group and Pleistocene Dupitila Formation. This implies that the structural development in the western Chittagong Tripura Fold Belt took place from the Pliocene. In the Hatia Trough, the timing of structural activation is slightly later (since the Plio-Pleistocene). In general, fold intensity and structural complexity gradually increase towards the east. The presence of reverse faults with minor strike-slip motion along the frontal thrust system in the outer wedge is also consistent with the regional transpressional structures of the Indo-Burman subduction system. However, to the west, there is no evidence for strike-slip deformation in the Hatia Trough. The restored sections show that the amount of E-W shortening in the Hatia Trough is very low (maximum 1.2%). In contrast, to the east, the amount of shortening is high (maximum 13.5%) in the western margin of the Chittagong Tripura Fold Belt. In both the areas, the key trapping mechanism includes anticlinal traps, although, stratigraphic and combinational traps are possible, but it requires further evaluation.


Sign in / Sign up

Export Citation Format

Share Document