scholarly journals Improved calibration of the Green–Ampt infiltration module in the EROSION-2D/3D model using a rainfall-runoff experiment database

SOIL ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 241-253
Author(s):  
Hana Beitlerová ◽  
Jonas Lenz ◽  
Jan Devátý ◽  
Martin Mistr ◽  
Jiří Kapička ◽  
...  

Abstract. Soil infiltration is one of the key factors that has an influence on soil erosion caused by rainfall. Therefore, a well-represented infiltration process is a necessary precondition for successful soil erosion modelling. Complex natural conditions do not allow the full mathematical description of the infiltration process, and additional calibration parameters are required. The Green–Ampt-based infiltration module in the EROSION-2D/3D model introduces a calibration parameter “skinfactor” to adjust saturated hydraulic conductivity. Previous studies provide skinfactor values for several combinations of soil and vegetation conditions. However, their accuracies are questionable, and estimating the skinfactors for other than the measured conditions yields significant uncertainties in the model results. This study brings together an extensive database of rainfall simulation experiments, the state-of-the-art model parametrisation method and linear mixed-effect models to statistically analyse relationships between soil and vegetation conditions and the model calibration parameter skinfactor. New empirically based transfer functions for skinfactor estimation significantly improving the accuracy of the infiltration module and thus the overall EROSION-2D/3D model performance are provided in this study. Soil moisture and bulk density were identified as the most significant predictors explaining 82 % of the skinfactor variability, followed by the soil texture, vegetation cover and impact of previous rainfall events. The median absolute percentage error of the skinfactor prediction was improved from 71 % using the currently available method to 30 %–34 % using the presented transfer functions, which led to significant decrease in error propagation into the model results compared to the present method. The strong logarithmic relationship observed between the calibration parameter and soil moisture however indicates high overestimation of infiltration for dry soils by the algorithms implemented in EROSION-2D/3D and puts the state-of-the-art parametrisation method in question. An alternative parameter optimisation method including calibration of two Green–Ampt parameters' saturated hydraulic conductivity and water potential at the wetting front was tested and compared with the state-of-the-art method, which paves a new direction for future EROSION-2D/3D model parametrisation.

2020 ◽  
Author(s):  
Hana Beitlerová ◽  
Jonas Lenz ◽  
Jan Devátý ◽  
Martin Mistr ◽  
Jiří Kapička ◽  
...  

Abstract. Soil infiltration is one of the key factors that has an influence on soil erosion caused by rainfall. Therefore, a well-represented infiltration process is a necessary precondition for successful soil erosion modelling. Complex natural conditions do not allow the full mathematical description of the infiltration process and additional calibration parameters are required. The Green-Ampt based infiltration module in the EROSION-2D/3D model is adjusted by calibration of the skinfactor parameter. Previous studies provide skinfactor values for several combinations of soil and vegetation conditions. However, their accuracies are questionable and estimating the skinfactors for other than the measured conditions yields significant uncertainties in the model results. This study presents new empirically based transfer functions for skinfactor estimation that significantly improve the accuracy of the infiltration module and thus the overall EROSION-2D/3D model performance. The transfer functions are based on a statistical analysis of the rainfall-runoff simulation database, which contains 273 experiments compiled by two independent working groups. Linear mixed effects models, with a manual backward elimination approach for the predictor selection, were applied to derive the transfer functions. Soil moisture and bulk density were identified as the most significant predictors explaining 79 % of the skinfactor variability, followed by the soil texture and the impact of previous rainfall events. The mean absolute percentage error of the skinfactor prediction was improved from 192 % using the currently available method, to 66 % using the presented transfer functions. Error propagation of the predicted skinfactors into the surface runoff and soil loss on the hypothetical slope showed significant improvement in the EROSION-2D/3D results. A first validation of real rainfall-runoff events indicates good model performance for events with a higher total precipitation and intensity.


1986 ◽  
Vol 66 (2) ◽  
pp. 249-259 ◽  
Author(s):  
G. D. BUCKLAND ◽  
D. B. HARKER ◽  
T. G. SOMMERFELDT

Saturated hydraulic conductivity (Ks) and drainable porosity (f) determined by different methods and for different depths were compared with those determined from the performance of drainage systems installed at two locations. These comparisons were made to determine which methods are suitable for use in subsurface drainage design. Auger hole and constant-head well permeameter Ks were 140 and 110%, respectively, of Ks determined from subsurface drains. Agreement of horizontal or vertical Ks, from in situ falling-head permeameters; to other methods was satisfactory providing sample numbers were large. Ks by Tempe cells was only 3–10% of drain Ks and in one instance was significantly lower than Ks determined by all other methods. At one site a profile-averaged value of f determined from the soil moisture characteristic curve (0–5 kPa) of semidisturbed cores agreed with that determined from drainage trials. At the other site, a satisfactory value of f was found only when the zone in which the water table fluctuated was considered. Results indicate that Ks determined by the auger hole and constant-head well permeameter methods, and f determined from the soil moisture characteristic curve of semidisturbed cores, are sufficiently reliable and practical for subsurface drainage design. Key words: Subsurface drainage, hydraulic conductivity, drainable porosity


2005 ◽  
Vol 85 (1) ◽  
pp. 161-172 ◽  
Author(s):  
H. W. Rees ◽  
T. L. Chow

Maintenance of soil quality and crop productivity is a major concern under intensive potato (Solanum tuberosum L.) production. The effects of four consecutive annual applications of 0.00, 2.25, 4.50 and 9.00 t ha-1 wet hay on growing season soil moisture and thermal regimes, soil quality and yield were evaluated on a loamy Orthic Humo-Ferric Podzol between 1995 and 1999. Hay mulching increased soil moisture at the beginning of the growing season by 6.5 to 12.7%, with increases significant until June 24, September 07 and September 20 for the 2.25, 4.50 and 9.00 t ha-1 treatments, respectively. Growing season soil temperature of the 4.50 and 9.00 t ha-1 treatments were lower than control, but only by −0.2 and −0.8°C, respectively. Hay mulching increased soil organic carbon (SOC) of the plow layer (0–25 cm), which increased biological activity resulting in better soil aggregation with more macropores, faster saturated hydraulic conductivity and reduced bulk density. Soil air CO2 concentration was significantly correlated to SOC content, aggregation, porosity and saturated hydraulic conductivity. Hay mulching at 2.25 and 4.50 t ha-1 increased total potato yield over that of the unmulched control by 11–14%, but was insufficient to maintain soil productivity. Hay mulching at 9.00 t ha-1 may have been excessive in terms of crop yield as it showed no total yield benefits. Key words: Organic carbon, CO2 concentration, aggregates, porosity


2020 ◽  
Author(s):  
Martine van der Ploeg ◽  
Attila Nemes

<p>Soil hydro-physical properties —such as soil water retention, (un)saturated hydraulic conductivity, shrinkage and swelling, organic matter content, texture (particle distribution), structure (soil aggregation/pore structure)and bulk density— are used in many sub(surface) modeling applications. Reliable soil-hydrophysical properties are key to proper predictions with such models, yet the harmonization and standardization of these properties has not received much attention. Lack of harmonization and standardization may lead to heterogeneity in data as a result of differences in methodologies, rather than real landscape heterogeneity. A need and scope has been identified to better harmonize, innovate, and standardize methodologies regarding measuring soil hydraulic properties that form the information base of many derived products in support of EU policy. With this identified need in mind the Soil Program on Hydro-Physics via International Engagement (SOPHIE) was initiated in 2017. Besides developing new activities that may advise future measurements, we also explore historic data and metadata and mine its relevant contents. The European Hydro-pedological Data Inventory (EU-HYDI), the largest European database on measured soil hydrophysical properties, is – to date – rather under-explored in this sense, which served as motivation for this work.</p><p>From EU-HYDI we selected those records that were complete for soil texture, bulk density and organic matter, and fitted pedo-transfer functions separately for particular water retention points (at heads of 0, 2.5, 10, 100, 300, 1000, 3000, 15000 cm) and saturated hydraulic conductivity by multi-linear regression. We then subtracted the observed retention and hydraulic conductivity values from their estimated counterparts, and grouped the residuals by measurement methodologies. The results show that there can be significant differences between different methodologies and sample sizes used to obtain the water retention and hydraulic conductivity in the laboratory. The results thus show that the EU-data that may underlie large scale modelling may introduce errors in the forcing data that are attributed to a lack of harmonization and standardization in currently used measurement protocols.</p>


2017 ◽  
Vol 21 (7) ◽  
pp. 3749-3775 ◽  
Author(s):  
Conrad Jackisch ◽  
Lisa Angermann ◽  
Niklas Allroggen ◽  
Matthias Sprenger ◽  
Theresa Blume ◽  
...  

Abstract. The study deals with the identification and characterization of rapid subsurface flow structures through pedo- and geo-physical measurements and irrigation experiments at the point, plot and hillslope scale. Our investigation of flow-relevant structures and hydrological responses refers to the general interplay of form and function, respectively. To obtain a holistic picture of the subsurface, a large set of different laboratory, exploratory and experimental methods was used at the different scales. For exploration these methods included drilled soil core profiles, in situ measurements of infiltration capacity and saturated hydraulic conductivity, and laboratory analyses of soil water retention and saturated hydraulic conductivity. The irrigation experiments at the plot scale were monitored through a combination of dye tracer, salt tracer, soil moisture dynamics, and 3-D time-lapse ground penetrating radar (GPR) methods. At the hillslope scale the subsurface was explored by a 3-D GPR survey. A natural storm event and an irrigation experiment were monitored by a dense network of soil moisture observations and a cascade of 2-D time-lapse GPR trenches. We show that the shift between activated and non-activated state of the flow paths is needed to distinguish structures from overall heterogeneity. Pedo-physical analyses of point-scale samples are the basis for sub-scale structure inference. At the plot and hillslope scale 3-D and 2-D time-lapse GPR applications are successfully employed as non-invasive means to image subsurface response patterns and to identify flow-relevant paths. Tracer recovery and soil water responses from irrigation experiments deliver a consistent estimate of response velocities. The combined observation of form and function under active conditions provides the means to localize and characterize the structures (this study) and the hydrological processes (companion study Angermann et al., 2017, this issue).


Sign in / Sign up

Export Citation Format

Share Document