Data forcing errors resulting from lack of harmonization and standardization in measurement methodologies: A comparison of soil hydrophysical data from a large EU database.

Author(s):  
Martine van der Ploeg ◽  
Attila Nemes

<p>Soil hydro-physical properties —such as soil water retention, (un)saturated hydraulic conductivity, shrinkage and swelling, organic matter content, texture (particle distribution), structure (soil aggregation/pore structure)and bulk density— are used in many sub(surface) modeling applications. Reliable soil-hydrophysical properties are key to proper predictions with such models, yet the harmonization and standardization of these properties has not received much attention. Lack of harmonization and standardization may lead to heterogeneity in data as a result of differences in methodologies, rather than real landscape heterogeneity. A need and scope has been identified to better harmonize, innovate, and standardize methodologies regarding measuring soil hydraulic properties that form the information base of many derived products in support of EU policy. With this identified need in mind the Soil Program on Hydro-Physics via International Engagement (SOPHIE) was initiated in 2017. Besides developing new activities that may advise future measurements, we also explore historic data and metadata and mine its relevant contents. The European Hydro-pedological Data Inventory (EU-HYDI), the largest European database on measured soil hydrophysical properties, is – to date – rather under-explored in this sense, which served as motivation for this work.</p><p>From EU-HYDI we selected those records that were complete for soil texture, bulk density and organic matter, and fitted pedo-transfer functions separately for particular water retention points (at heads of 0, 2.5, 10, 100, 300, 1000, 3000, 15000 cm) and saturated hydraulic conductivity by multi-linear regression. We then subtracted the observed retention and hydraulic conductivity values from their estimated counterparts, and grouped the residuals by measurement methodologies. The results show that there can be significant differences between different methodologies and sample sizes used to obtain the water retention and hydraulic conductivity in the laboratory. The results thus show that the EU-data that may underlie large scale modelling may introduce errors in the forcing data that are attributed to a lack of harmonization and standardization in currently used measurement protocols.</p>

Author(s):  
E.O. Ogundipe

Soil properties are important to the development of agricultural crops. This study determined some selected soil properties of a drip irrigated tomato (Lycopersicon esculentum M.) field at different moisture regime in South-Western Nigeria. The experiment was carried out using Randomized Complete Block Design with frequency and depth of irrigation application as the main plot and sub-plot, respectively in three replicates. Three frequencies (7, 5 and 3 days) and three depths equivalent to 100, 75 and 50% of water requirement were used. Undisturbed and disturbed soil samples were collected from 0-5, 5-10, 10-20 and 20-30 cm soil layers for the determination of some soil properties (soil texture, organic matter content, bulk density, infiltration rate and saturated hydraulic conductivity) were determined using standard formulae. Soil Water Content (SWC) monitoring was conducted every two days using a gravimetric technique. The soil texture was sandy loam for all the soil depths; average value of soil organic matter was highest (1.8%) in the 0-5 cm surface layer and decreased with soil depth; the soil bulk density value before and after irrigation experiment ranged from 1.48 and 1.73 g/cm3 and 1.5 and 1.76 g/cm3, respectively; there was a rapid reduction in the initial infiltration and final infiltration rate. Saturated hydraulic conductivity show similar trend although the 20-30 cm layer had the lowest value (50.84 mm/h); the SWC affect bulk density during the growing season. The study showed that soil properties especially bulk density and organic matter content affect irrigation water movement at different depth..


2004 ◽  
Vol 84 (1) ◽  
pp. 115-123 ◽  
Author(s):  
Osama K. Nusier

Due to its high organic matter content, peatmoss can be highly beneficial to agricultural soil. In this research, the impact of varying organic matter contents at different compaction efforts on water retention, saturated hydraulic conductivity, and modulus of rupture of three soils (sandy loam, clay loam, and clay) has been investigated under laboratory conditions. Compaction changed the ability of the soils to hold water, increased modulus of rupture, and decreased the plant-available water-holding capacity of the soils. On the other hand, organic matter generally increased the ability of the soils to hold water, expanded the available water capacity, and decreased the modulus of rupture of compacted soils. Key words: Peatmoss, water retention, saturated hydraulic conductivity, modulus of rupture


1985 ◽  
Vol 65 (1) ◽  
pp. 233-236 ◽  
Author(s):  
G. J. BEKE ◽  
M. I. MacCORMICK

Relationships between soil water retention and soil properties were developed for subsoil materials from Colchester County, Nova Scotia. The significant variables in the regression equation for soil water content at a suction of 33 kPa were the sand content and the product of silt content and bulk density of the soil. The variables for water retention at 1500 kPa suction were the clay content and the product of organic matter content and bulk density. The multiple correlation coefficients were 0.87 and 0.92 for suctions of 33 and 1500 kPa, respectively. The developed equations were comparable to ones derived elsewhere. Key words: Water retention, texture, organic matter, bulk density


2020 ◽  
pp. 124-132

An evaluation of the productivity of degraded alfisols at Makurdi and Otobi, Nigeria, using artificial desurfacing techniques (ADT) was carried out in 2012 and 2013 cropping seasons. The study was a split-split plot experiment arranged in a Randomized Complete Block Design with three replications. The soil was desurfaced at 0 – 5, 0 – 10, 0 – 15, 0 – 20 cm and the undesurfaced soil, 0 cm (control) depths. The restorative amendments were 9 t ha-1 of poultry dropping as an organic source of manure, N:P2O5:K2O as an inorganic source of manure and zero application as control. Soybean variety TGX 1448-2E and maize variety, Oba super II were used as test crop. Saturated hydraulic conductivity was significantly (P = 0.05) lower at 20 cm (29.08 cm hr-1 ), but did not differ significantly at 0 to 10 cm depths. Soil pH of 5.58 was recorded at 0 cm depth and it decreased to 5.05 at 20 cm depth. Also, organic matter content (1.71 – 1.00 g kg-1 ), total nitrogen (0.12 – 0.08 g kg-1 ) as well as CEC (7.39 – 6.24 cmol kg-1 ) recorded a significant decrease with increase in soil depth from 0 to 20 cm depths. Application of poultry manure increased total porosity and saturated hydraulic conductivity as well as organic matter content across desurfaced depths. Soybean number of leaves was significantly (P = 0.05) reduced at 4, 7, and 10 WAP with increased topsoil removal. The highest grain yield of soybean (1474 kg ha-1 ) was recorded on poultry manure treated plots which were significantly higher (p = 0.05) than other treatments. Application of poultry manure caused 20 % soybean yield reduction at 5 depth, and a 56 % reduction at 20 cm depth.


Agronomy ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 133
Author(s):  
Ting Yang ◽  
Xuguang Xing ◽  
Yan Gao ◽  
Xiaoyi Ma

Applying soil amendments plays a critical role in relieving water stress in arid and semiarid areas. The natural clay mineral attapulgite (ATP) can be utilized to adjust the balance of water and soil environment. In this study, we investigated four different particle size distribution typical soils in the Loess Plateau: (1) lou soil (LS), (2) dark loessial soil (DS), (3) cultivated loess soil (CS), (4) sandy soil (SS). Five ATP application rates (0, 1%, 2%, 3%, and 4%) were selected to test the effect of ATP on the soil water retention curve, soil saturated hydraulic conductivity, and soil structure. The results showed that applied ATP significantly increased the soil clay content, and the relative change of SS with 3% ATP applied increased by 53.7%. The field water holding capacity of LS, DS, CS, and SS with 3% ATP applied increased by 8.9%, 9.6%, 18.2%, and 45.0%, respectively. Although applied ATP reduced the saturated hydraulic conductivity, the values of CS and SS were opposite when the amount of ATP applied was >3%. The relative change in the amount of 0.25–1 mm soil water-stable aggregates of SS was 155.9% when 3% ATP was applied. Applied ATP can enhance soil water retention and soil stability, which may improve limited water use efficiency and relieve soil desiccation in arid and semiarid areas or similar hydrogeological areas.


1981 ◽  
Vol 61 (2) ◽  
pp. 225-236 ◽  
Author(s):  
C. R. DE KIMPE ◽  
M. R. LAVERDIERE ◽  
J. ZIZKA

Rounding of the lands in a field involves changes in the surface horizons. The thickness of Ap horizons at various sites in corn fields varied from 15 to 41 cm. In these horizons, the organic matter content that ranged between 10 and 250 t/ha influenced the real density of the particles, the bulk density of soils with similar texture, and also the shape of the water retention curves at tensions from 0 to 1.5 MPa. Maximum available water in the Ap horizons between 33.3 kPa and 1.5 MPa varied from 0.5 to 4 cm H2O. Yield differences reached 74% while the standard deviations were generally lower than 15%. Higher yields were observed at higher, intermediate and lower sites of the fields. The differences in the yield were not entirely accounted for by the variations in the chemical and physical properties of the soils.


Sign in / Sign up

Export Citation Format

Share Document