scholarly journals Validating modeled critical crack length for crack propagation in the snow cover model SNOWPACK

2019 ◽  
Vol 13 (12) ◽  
pp. 3353-3366 ◽  
Author(s):  
Bettina Richter ◽  
Jürg Schweizer ◽  
Mathias W. Rotach ◽  
Alec van Herwijnen

Abstract. Observed snow stratigraphy and snow stability are of key importance for avalanche forecasting. Such observations are rare and snow cover models can improve the spatial and temporal resolution. To evaluate snow stability, failure initiation and crack propagation have to be considered. Recently, a new stability criterion relating to crack propagation, namely the critical crack length, was implemented into the snow cover model SNOWPACK. The critical crack length can also be measured in the field with a propagation saw test, which allows for an unambiguous comparison. To validate and improve the parameterization for the critical crack length, we used data from 3 years of field experiments performed close to two automatic weather stations above Davos, Switzerland. We monitored seven distinct weak layers and performed in total 157 propagation saw tests on a weekly basis. Comparing modeled to measured critical crack length showed some discrepancies stemming from model assumption. Hence, we replaced two variables of the original parameterization, namely the weak layer shear modulus and thickness, with a fit factor depending on weak layer density and grain size. With these adjustments, the normalized root-mean-square error between modeled and observed critical crack lengths decreased from 1.80 to 0.28. As the improved parameterization accounts for grain size, values of critical crack lengths for snow layers consisting of small grains, which in general are not weak layers, become larger. In turn, critical weak layers appear more prominently in the vertical profile of critical crack length simulated with SNOWPACK. Hence, minimal values in modeled critical crack length better match observed weak layers. The improved parameterization of critical crack length may be useful for both weak layer detection in simulated snow stratigraphy and also providing more realistic snow stability information – and hence may improve avalanche forecasting.

2019 ◽  
Author(s):  
Bettina Richter ◽  
Jürg Schweizer ◽  
Mathias W. Rotach ◽  
Alec van Herwijnen

Abstract. Data on snow stratigraphy and snow instability are of key importance for avalanche forecasting. Snow cover models can improve the spatial and temporal resolution of such data, especially if they also provide information on snow instability. Recently, a new stability criterion, namely a parameterization for the critical crack length, was implemented into the snow cover model SNOWPACK. To validate and improve this parameterization, we therefore used data from three years of field experiments performed close to two automatic weather station above Davos, Switzerland. Monitoring the snowpack on a weekly basis allowed to investigate limitations of the model. Based on 145 experiments we replaced two variables of the original parameterization, which were not sufficiently well modeled, with a fit factor thereby decreasing the normalized root mean square error from 1.80 to 0.28. With this fit factor, the improved parameterization accounts for the grain size resulting in lower critical crack lengths for snow layers with larger grains. This also improved an automatic weak layer detection method using a simple local minimum by increasing the probability of detection from 0.26 to 0.91 and decreased the false alarm ratio from 0.89 to 0.47.


2017 ◽  
Vol 11 (1) ◽  
pp. 217-228 ◽  
Author(s):  
Johan Gaume ◽  
Alec van Herwijnen ◽  
Guillaume Chambon ◽  
Nander Wever ◽  
Jürg Schweizer

Abstract. The failure of a weak snow layer buried below cohesive slab layers is a necessary, but insufficient, condition for the release of a dry-snow slab avalanche. The size of the crack in the weak layer must also exceed a critical length to propagate across a slope. In contrast to pioneering shear-based approaches, recent developments account for weak layer collapse and allow for better explaining typical observations of remote triggering from low-angle terrain. However, these new models predict a critical length for crack propagation that is almost independent of slope angle, a rather surprising and counterintuitive result. Based on discrete element simulations we propose a new analytical expression for the critical crack length. This new model reconciles past approaches by considering for the first time the complex interplay between slab elasticity and the mechanical behavior of the weak layer including its structural collapse. The crack begins to propagate when the stress induced by slab loading and deformation at the crack tip exceeds the limit given by the failure envelope of the weak layer. The model can reproduce crack propagation on low-angle terrain and the decrease in critical length with increasing slope angle as modeled in numerical experiments. The good agreement of our new model with extensive field data and the ease of implementation in the snow cover model SNOWPACK opens a promising prospect for improving avalanche forecasting.


2021 ◽  
Author(s):  
Bertil Trottet ◽  
Ron Simenhois ◽  
Gregoire Bobillier ◽  
Alec van Herwijnen ◽  
Chenfanfu Jiang ◽  
...  

<p>Snow slab avalanche release can be separated in four distinct phases : (i) failure initiation in a weak snow layer buried below a cohesive snow slab, (ii) the onset and, (iii) dynamic phase of crack propagation within the weak layer across the slope and (iv) the slab release. The highly porous character of the weak layer implies volumetric collapse during failure which leads to the closure of crack faces followed by the onset of frictional contact. To better understand the mechanisms of dynamic crack propagation, we performed numerical simulations, snow fracture experiments, and analyzed the release of full scale avalanches. Simulations of crack propagation are based on the Material Point Method (MPM) and finite strain elastoplasticity. Experiments consist of the so-called Propagation Saw Test (PST). Concerning full scale measurements, an algorithm is applied to detect changes in image pixel intensity induced by slab displacements. We report the existence of a transition from sub-Rayleigh anticrack to supershear crack propagation following the Burridge-Andrews mechanism. In detail, after reaching the critical crack length, self-propagation starts in a sub-Rayleigh regime and is driven by slab bending induced by weak layer collapse. If the slope angle is larger than a critical value, and if a so-called super critical crack length is reached, supershear crack propagation occurs. The corresponding critical angle may be lower than the weak layer friction angle due to the loss of frictional resistance during volumetric collapse. The sub-Rayleigh regime is driven by mixed mode anticrack propagation while the supershear regime corresponds to a pure mode II propagation with intersonic crack speeds (v: crack speed, c<sub>s</sub>: shear wave speed, c<sub>p</sub>: longitudinal wave speed, E: slab Young's modulus and ρ: slab density). This intersonic regime of crack propagation thus leads to pure tensile slab fractures initiating from the bottom of the slab as opposed to top initiations induced by slab bending in the sub-Rayleigh regime. Key ingredients for the existence of this transition are discussed such as the role played by friction angle, collapse height and slab secondary fractures. </p>


2021 ◽  
Author(s):  
Benjamin Reuter ◽  
Léo Viallon-Galinier ◽  
Stephanie Mayer ◽  
Pascal Hagenmuller ◽  
Samuel Morin

<p>Snow cover models have mostly been developed to support avalanche forecasting. Recently developed snow instability metrics can help interpreting modeled snow cover data. However, presently snow cover models cannot forecast the relevant avalanche problem types – an essential element to describe avalanche danger. We present an approach to detect, track and assess weak layers in snow cover model output data to eventually assess the related avalanche problem type. We demonstrate the applicability of this approach with both, SNOWPACK and CROCUS snow cover model output for one winter season at Weissfluhjoch. We introduced a classification scheme for four commonly used avalanche problem types including new snow, wind slabs, persistent weak layers and wet snow, so different avalanche situations during a winter season can be classified based on weak layer type and meteorological conditions. According to the modeled avalanche problem types and snow instability metrics both models produced weaknesses in the modeled stratigraphy during similar periods. For instance, in late December 2014 the models picked up a non-persistent as well as a persistent weak layer that were both observed in the field and caused widespread instability in the area. Times when avalanches released naturally were recorded with two seismic avalanche detection systems, and coincided reasonably well with periods of low modeled stability. Moreover, the presented approach provides the avalanche problem types that relate to the observed natural instability which makes the interpretation of modeled snow instability metrics easier. As the presented approach is process-based, it is applicable to any model in any snow avalanche climate. It could be used to anticipate changes in avalanche problem type due to changing climate. Moreover, the presented approach is suited to support the interpretation of snow stratigraphy data for operational forecasting.</p>


2020 ◽  
Author(s):  
Stephanie Mayer ◽  
Alec van Herwijnen ◽  
Mathias Bavay ◽  
Bettina Richter ◽  
Jürg Schweizer

<p>Numerical snow cover models enable simulating present or future snow stratigraphy based on meteorological input data from automatic weather stations, numerical weather prediction or climate models. To assess avalanche danger for short-term forecasts or with respect to long-term trends induced by a warming climate, the modeled vertical layering of the snowpack has to be interpreted in terms of mechanical instability. In recent years, improvements in our understanding of dry-snow slab avalanche formation have led to the introduction of new metrics describing the fracture processes leading to avalanche release. Even though these instability metrics have been implemented into the detailed snow cover model SNOWPACK, validated threshold values that discriminate rather stable from rather unstable snow conditions are not readily available. To overcome this issue, we compared a comprehensive dataset of almost 600 manual snow profiles with simulations. The manual profiles were observed in the region of Davos over 17 different winters and include stability tests such as the Rutschblock test as well as observations of signs of instability. To simulate snow stratigraphy at the locations of the manual profiles, we obtained meteorological input data by interpolating measurements from a network of automatic weather stations. By matching simulated snow layers with the layers from traditional snow profiles, we established a method to detect potential weak layers in the simulated profiles and determine the degree of instability. To this end, thresholds for failure initiation (skier stability index) and crack propagation criteria (critical crack length) were calibrated using the observed stability test results and signs of instability incorporated in the manual observations. The resulting instability criteria are an important step towards exploiting numerical snow cover models for snow instability assessment.</p>


1961 ◽  
Vol 83 (1) ◽  
pp. 32-38 ◽  
Author(s):  
J. Frisch

The mode of crack propagation and failure in relatively large 2024-T3 aluminum sheets reinforced with stiffeners parallel to the crack direction has been investigated. Curved specimens with a 69-in. radius of curvature as well as flat panels were subjected to uniaxial tension perpendicular to a simulated crack to study the effects of curvature, crack location, and stiffener spacing. Increase in strength due to stiffening particularly in the curved panels was observed although these specimens exhibited considerable lower crack strength than flat ones. For the specimens tested, crack location as well as variations of stiffener spacing from 3 to 12 in. had no appreciable effect on either critical crack length or failure stress.


2015 ◽  
Vol 21 (5) ◽  
pp. 559-570 ◽  
Author(s):  
Sepehr Ghafari ◽  
Fereidoon Nejad Moghadas

Fracture properties and crack propagation characteristics of asphalt concrete mixtures were studied by obtaining fracture resistance curves using three point single edge SE(B) notched beam specimens. Elastic-plastic approach is used in the calculation of the J-integral since the fracture process zone size is large enough to not use a linear elastic approach. Crack length measurements were obtained directly from high resolution images taken during the tests. A rising R-curve was observed in all the specimens which indicates ductility and a toughening mechanism in the ductile to quasi-brittle fracture of the mixture. Mixtures developed by limestone and siliceous aggregates with 4%, 4.5% and 5% binder contents were tested at temperatures ranging from +5ºC to –20ºC. Mixtures with 5% binder content showed greater crack resistant behavior at each temperature. Crack lengths at which crack propagation instability occurred were decreased by the reduction of temperature. A significant drop of this critical crack length is observed in temperatures below –15ºC. As well, the elastic-plastic fracture toughness is increased by the reduction of temperature up to –15ºC and starts to diminish thereafter.


2016 ◽  
Vol 16 (3) ◽  
pp. 775-788 ◽  
Author(s):  
Fabiano Monti ◽  
Johan Gaume ◽  
Alec van Herwijnen ◽  
Jürg Schweizer

Abstract. The process of dry-snow slab avalanche formation can be divided into two phases: failure initiation and crack propagation. Several approaches tried to quantify slab avalanche release probability in terms of failure initiation based on shear stress and strength. Though it is known that both the properties of the weak layer and the slab play a major role in avalanche release, most previous approaches only considered slab properties in terms of slab depth, average density and skier penetration. For example, for the skier stability index, the additional stress (e.g. due to a skier) at the depth of the weak layer is calculated by assuming that the snow cover can be considered a semi-infinite, elastic, half-space. We suggest a new approach based on a simplification of the multi-layered elasticity theory in order to easily compute the additional stress due to a skier at the depth of the weak layer, taking into account the layering of the snow slab and the substratum. We first tested the proposed approach on simplified snow profiles, then on manually observed snow profiles including a stability test and, finally, on simulated snow profiles. Our simple approach reproduced the additional stress obtained by finite element simulations for the simplified profiles well – except that the sequence of layering in the slab cannot be replicated. Once implemented into the classical skier stability index and applied to manually observed snow profiles classified into different stability classes, the classification accuracy improved with the new approach. Finally, we implemented the refined skier stability index into the 1–D snow cover model SNOWPACK. The two study cases presented in this paper showed promising results even though further verification is still needed. In the future, we intend to implement the proposed approach for describing skier-induced stress within a multi-layered snowpack into more complex models which take into account not only failure initiation but also crack propagation.


Sign in / Sign up

Export Citation Format

Share Document