scholarly journals Edge displacement scores

2021 ◽  
Vol 15 (8) ◽  
pp. 3785-3796
Author(s):  
Arne Melsom

Abstract. As a consequence of a diminishing sea ice cover in the Arctic, activity is on the rise. The position of the sea ice edge, which is generally taken to define the extent of the ice cover, changes in response to dynamic and thermodynamic processes. Forecasts for sea ice expansion on synoptic timescales due to an advancing ice edge will provide information that can be of significance for open ocean operations in polar regions. However, the value of this information depends on the quality of the forecasts. Here, we present methods for examining the quality of forecasted sea ice expansion on sub-seasonal timescales and the geographic location where the largest expansions are expected from the forecast results. The algorithm is simple to implement, and an examination of 2 years of model results and accompanying observations demonstrates the usefulness of the analysis.

2021 ◽  
Author(s):  
Arne Melsom

Abstract. As a consequence of a diminishing sea ice cover in the Arctic, activity is on the rise. The position of the sea ice edge, which is generally taken to define the extent of the ice cover, changes in response to dynamic and thermodynamic processes. Forecasts for sea ice expansion due to an advancing ice edge will provide information that can be of significance for operations in polar regions. However, the value of this information depends on the quality of the forecasts. Here, we present methods for examining the quality of forecasted sea ice expansion and the geographic location where the largest expansion are expected from the forecast results. The algorithm is simple to implement, and an examination of two years of model results and accompanying observations demonstrates the usefulness of the analysis.


2020 ◽  
Author(s):  
Ryan A. Green ◽  
Laurie Menviel ◽  
Katrin J. Meissner ◽  
Xavier Crosta

Abstract. Sea-ice cover over the Southern Ocean responds to and impacts Southern Ocean dynamics and, thus, mid to high latitude climate in the Southern Hemisphere. In addition, sea-ice cover can significantly modulate the carbon exchange between the atmosphere and the ocean. As climate models are the only tool available to project future climate changes, it is important to assess their performance in simulating past changes. The Last Glacial Maximum (LGM, ∼21,000 years ago) represents an interesting target as it is a relatively well documented period with climatic conditions and a carbon cycle very different from pre-industrial conditions. Here, we study the changes in seasonal Antarctic sea-ice cover as simulated in numerical PMIP3 and LOVECLIM simulations of the LGM, and their relationship with windstress and ocean temperature. Simulations and paleo-proxy records suggest a fairly well constrained glacial winter sea-ice edge at 51.5° S (1 sigma range: 50°–55.5° S). Simulated glacial summer sea-ice cover however differs widely between models, ranging from almost no sea ice to a sea-ice edge reaching 55.5° S. The austral summer multi-model mean sea-ice edge lies at ∼60.5° S (1 sigma range: 57.5°–70.5° S). Given the lack of strong constraints on the summer sea-ice edge based on sea-ice proxy records, we extend our model-data comparison to summer sea-surface temperature. Our analysis suggests that the multi-model mean summer sea ice provides a reasonable, albeit upper end, estimate of the austral summer sea-ice edge allowing us to conclude that the multi-model mean of austral summer and winter sea-ice cover seem to provide good estimates of LGM conditions. Using these best estimates, we find that there was a larger sea-ice seasonality during the LGM compared to the present day.


2019 ◽  
Author(s):  
Arne Melsom ◽  
Cyril Palerme ◽  
Malte Müller

Abstract. The ice edge is a simple quantity in the form of a line that can be derived from a spatially varying sea ice concentration field. Due to its long history and relevance for operations in the Arctic, the position of the ice edge should be an essential element in any system that is designed to monitor or provide forecasts for the physical state of the Arctic Ocean and adjacent ocean regions. Like for all components of monitoring and forecast products, users need to complement information about the ice edge position with the expected accuracy of the data or model results. Such information is traditionally available as a set of metrics that provide a concentrated assessment of the information quality. In this study we provide a survey of metrics that are presently included in the product quality assessment of the CMEMS Arctic Marine Forecasting Center sea-ice edge position forecast. We show that when ice edge results from different products are compared, mismatching results for polynya and local freezing at the coasts of continents and archipelagos have a large impact on the quality assessment. Such situations, which occur regularly in the products we examine, have not previously properly been acknowledged when a set of metrics for the quality of ice edge position results have been constructed. We examine the quality of ice edge forecasts using a total of 17 metrics for the ice edge position. These metrics are analyzed in synthetic examples, in selected cases of actual forecasts, and for a full year of weekly forecast bulletins. Using necessity and simplicity of information as a guideline, we recommend using a set of four metrics that sheds light on the various aspects of product quality that we consider. Moreover, any user is expected to be interested in a limited part of the geographical domain, so metrics derived as domain-wide integrated quantities may be of limited value. Consequently, we recommend that metrics are also made available for appropriate set of subdomains. Furthermore, we find that the metrics' decorrelation time scales are much longer than the present forecast range. Hence our final recommendation is to include depictions of gridded mismatching of ice edge positions using maps for the integrated ice edge error.


2018 ◽  
Author(s):  
Gustavo Yunda-Guarin ◽  
Philippe Archambault ◽  
Guillaume Massé ◽  
Christian Nozais

In polar areas, the pelagic-benthic coupling plays a fundamental role in ensuring organic matter flow across depths and trophic levels. Climate change impacts the Arctic’s physical environment and ecosystem functioning, affecting the sequestration of carbon, the structure and efficiency of the benthic food web and its resilience.In the Arctic Ocean, highest atmospheric warming tendencies (by ~0.5°C) occur in the east of Baffin Bay making this area an ideal site to study the effects of climate change on benthic communities. We sampled epibenthic organisms at 13 stations bordering the sea ice between June and July 2016. The epibenthic taxonomic composition was identified and grouped by feeding guilds. Isotopic signatures (δ13C - δ15N), trophic levels and trophic separation and redundancy were measured and quantified at each station. In the light of the results obtained, the stability of the benthic community in the Baffin Bay at the sea ice edge is discussed.


MAUSAM ◽  
2021 ◽  
Vol 60 (3) ◽  
pp. 295-308
Author(s):  
NILAY SHARMA ◽  
M. K. DASH ◽  
P. C. PANDEY ◽  
N. K. VYAS

The ice covered regions of the polar seas influence the global climate in several ways. Any perturbation in the polar oceanic cryosphere affects the local weather and the global climate through modulation of the radiative forcing, the bottom water formation and the mass & the momentum transfer between Atmosphere-Cryosphere-Ocean System. The cold, harsh and inhospitable conditions in the polar regions prohibit the collection of extensive in situ data with sufficient spatial and temporal variation. However, satellite remote sensing is an ideal technique for studying the areas like the polar regions with synoptic and repetitive coverage.  This paper discusses the analysis of the data obtained over the polar oceanic regions during the period June 1999 – September 2001 through the use of Multi-channel Scanning Microwave Radiometer (MSMR), onboard India’s first oceanographic satellite Oceansat-1. The MSMR observation shows that all the sectors in the Antarctic behave differently to the melting and formation of the sea ice. Certain peculiar features like the increase in sea ice extent during the melt season of 1999 – 2000 in the Indian Ocean sector, 15 – 20% decrease in the sea ice extent in the western Pacific sector during the ice formation period for the year 2000, melting spell within the formation phase of sea ice in B & A sector in the year 2000 were observed. On the other hand the northern polar sea ice extent is seen to be more dominated by the land characteristics. The ice formation in Kara and the Barent Sea sector is dominated by the ocean currents, where as the ice covered in the Japan and the Okhotsk Sea is dominated by the land processes. The sea ice extent in the Arctic Ocean show fluctuations from July to October and remain almost steady over other months. The global sea ice cover shows a formation phase from March to June and melting phase from November to February. In other months, i.e., from July – October the global sea ice cover is dominated by the hemispheric asymmetry of the ice growth and retreat.


2014 ◽  
Vol 8 (5) ◽  
pp. 1777-1799 ◽  
Author(s):  
K. R. Barnhart ◽  
I. Overeem ◽  
R. S. Anderson

Abstract. Sea ice limits the interaction of the land and ocean water in the Arctic winter and influences this interaction in the summer by governing the fetch. In many parts of the Arctic, the open-water season is increasing in duration and summertime sea-ice extents are decreasing. Sea ice provides a first-order control on the physical vulnerability of Arctic coasts to erosion, inundation, and damage to settlements and infrastructures by ocean water. We ask how the changing sea-ice cover has influenced coastal erosion over the satellite record. First, we present a pan-Arctic analysis of satellite-based sea-ice concentration specifically along the Arctic coasts. The median length of the 2012 open-water season, in comparison to 1979, expanded by between 1.5 and 3-fold by Arctic Sea sector, which allows for open water during the stormy Arctic fall. Second, we present a case study of Drew Point, Alaska, a site on the Beaufort Sea, characterized by ice-rich permafrost and rapid coastal-erosion rates, where both the duration of the open-water season and distance to the sea-ice edge, particularly towards the northwest, have increased. At Drew Point, winds from the northwest result in increased water levels at the coast and control the process of submarine notch incision, the rate-limiting step of coastal retreat. When open-water conditions exist, the distance to the sea ice edge exerts control on the water level and wave field through its control on fetch. We find that the extreme values of water-level setup have increased consistently with increasing fetch.


Sign in / Sign up

Export Citation Format

Share Document