scholarly journals Seasonal evolution of Antarctic supraglacial lakes in 2015–2021 and links to environmental controls

2021 ◽  
Vol 15 (11) ◽  
pp. 5205-5226
Author(s):  
Mariel C. Dirscherl ◽  
Andreas J. Dietz ◽  
Claudia Kuenzer

Abstract. Supraglacial meltwater accumulation on ice shelves may have important implications for future sea level rise. Despite recent progress in the understanding of Antarctic surface hydrology, potential influences on ice shelf stability as well as links to environmental drivers remain poorly constrained. In this study, we employ state-of-the-art machine learning on Sentinel-1 synthetic aperture radar (SAR) and optical Sentinel-2 satellite imagery to provide new insight into the inter-annual and intra-annual evolution of surface hydrological features across six major Antarctic Peninsula and East Antarctic ice shelves. For the first time, we produce a high-resolution record of supraglacial lake extent dynamics for the period 2015–2021 at unprecedented 10 m spatial resolution and bi-weekly temporal scale. Through synergetic use of optical and SAR data, we obtain a more complete mapping record also enabling the delineation of buried lakes. Our results for Antarctic Peninsula ice shelves reveal below-average meltwater ponding during most of melting seasons 2015–2018 and above-average meltwater ponding throughout summer 2019–2020 and early 2020–2021 considering years 2015–2021 as a reference period. Meltwater ponding on investigated East Antarctic ice shelves was far more variable, with above-average lake extents during most 2016–2019 melting seasons and below-average lake extents during 2020–2021, considering the reference interval 2016–2021. This study is the first to investigate relationships with climate drivers both spatially and temporally including time lag analysis. The results indicate that supraglacial lake formation in 2015–2021 is coupled to the complex interplay of local, regional and large-scale environmental drivers with similar driving factors over both ice sheet regions. In particular, varying air temperature, solar radiation and wind conditions influenced supraglacial lake formation over all six ice shelves despite strong local to regional discrepancies, as revealed through pixel-based correlation analysis. Furthermore, regional climatic conditions were shown to be influenced by Southern Hemisphere atmospheric modes showing large-scale impacts on the spatio-temporal evolution of supraglacial lakes as well as on above- or below-average meltwater ponding with respect to the period 2015–2021. Finally, the local glaciological setting, including melt–albedo feedbacks and the firn air content, was revealed to strongly influence supraglacial lake distribution. Recent increases in Antarctic Peninsula surface ponding point towards a further reduction in the firn air content, implying an increased risk for ponding and hydrofracture. In addition, lateral meltwater transport was observed over both Antarctic regions with similar implications for future ice shelf stability.

2021 ◽  
Author(s):  
Mariel Christina Dirscherl ◽  
Andreas J. Dietz ◽  
Claudia Kuenzer

Abstract. Supraglacial meltwater accumulation on ice shelves may have important implications for future sea-level-rise. Despite recent progress in the understanding of Antarctic surface hydrology, potential influences on ice shelf stability as well as links to environmental drivers remain poorly constrained. In this study, we employ state-of-the-art machine learning on Sentinel-1 Synthetic Aperture Radar (SAR) and optical Sentinel-2 satellite imagery to provide new insight into the inter-annual and intra-annual evolution of surface hydrological features across six major Antarctic Peninsula and East Antarctic ice shelves. For the first time, we produce a record of supraglacial lake extent dynamics for the period 2015–2021 at unprecedented 10 m spatial resolution and bi-weekly temporal scale. Through synergetic use of optical and SAR data, we obtain a more complete mapping record enabling the delineation of also buried lakes. Our results for Antarctic Peninsula ice shelves reveal below average meltwater ponding during most of melting seasons 2015–2018 and above average meltwater ponding throughout summer 2019–2020 and early 2020–2021. Meltwater ponding on investigated East Antarctic ice shelves was far more variable with above average lake extents during most of melting seasons 2016–2019 and below average lake extents during 2020–2021. This study is the first to investigate relationships with climate drivers both, spatially and temporally including time lag analysis. The results indicate that supraglacial lake formation in 2015–2021 is coupled to the complex interplay of varying air temperature, solar radiation, snowmelt, wind and precipitation, each at different time lags and directions and with strong local to regional discrepancies, as revealed through pixel-based correlation analysis. Southern Hemisphere atmospheric modes as well as the local glaciological setting including melt-albedo feedbacks and the firn air content were revealed to strongly influence the spatio-temporal evolution of supraglacial lakes as well as below or above average meltwater ponding despite variations in the strength of forcing. Recent increases of Antarctic Peninsula surface ponding point towards a further reduction of the firn air content implying an increased risk for ponding and hydrofracture. In addition, lateral meltwater transport was observed over both Antarctic regions with similar implications for future ice shelf stability.


2013 ◽  
Vol 54 (63) ◽  
pp. 1-10 ◽  
Author(s):  
Douglas R. MacAyeal ◽  
Olga V. Sergienko

AbstractA conspicuous precursor of catastrophic ice-shelf break-up along the Antarctic Peninsula, reported widely in the literature, is the gradual increase in surface melting and consequent proliferation of supraglacial lakes and dolines. Here we present analytical and numerical solutions for the flexure stresses within an ice shelf covered by lakes and dolines, both isolated and arrayed. We conclude that surface water promotes ice-shelf instability in two ways: (1) by water-assisted crevasse penetration, as previously noted, and (2) by the inducement of strong tensile flexure stresses (exceeding background spreading stress by 10–100 times) in response to surface water mass loads and ‘hydrostatic rebound’ occurring when meltwater lakes drain.


2020 ◽  
Author(s):  
Jennifer F. Arthur ◽  
Chris R. Stokes ◽  
Stewart S. R. Jamieson ◽  
J. Rachel Carr ◽  
Amber A. Leeson

Abstract. Supraglacial lakes (SGLs) enhance surface melting and can flex and fracture ice shelves when they grow and subsequently drain, potentially leading to ice shelf disintegration. However, the seasonal evolution of SGLs and their influence on ice shelf stability in East Antarctica remains poorly understood, despite some potentially vulnerable ice shelves having high densities of SGLs. Using optical satellite imagery, air temperature data from climate reanalysis products and surface melt predicted by a regional climate model, we present the first long-term record (2000–2020) of seasonal SGL evolution on Shackleton Ice Shelf, which is Antarctica’s northernmost remaining ice shelf and buttresses Denman Glacier, a major outlet of the East Antarctic Ice Sheet. In a typical melt season, we find hundreds of SGLs with a mean area of 0.02 km2, a mean depth of 0.96 m, and a mean total meltwater volume of 7.45 x 106 m3. At their most extensive, SGLs cover a cumulative area of 50.7 km2 and are clustered near to the grounding line, where densities approach 0.27 km2 per km2. Here, SGL development is linked to an albedo-lowering feedback associated with katabatic winds, together with the presence of blue ice and exposed rock. Although below average seasonal (December-January-February, DJF) temperatures are associated with below average peaks in total SGL area and volume, warmer seasonal temperatures do not necessarily result in higher SGL areas and volumes. Rather, peaks in total SGL area and volume show a much closer correspondence with short-lived high magnitude snowmelt events. We therefore suggest seasonal lake evolution on this ice shelf is instead more sensitive to snowmelt intensity associated with katabatic wind-driven melting. Our analysis provides important constraints on the boundary conditions of supraglacial hydrology models and numerical simulations of ice shelf stability.


2021 ◽  
Author(s):  
Thomas Barnes ◽  
Amber Leeson ◽  
Mal McMillan ◽  
Vincent Verjans ◽  
Chris Kittel

<p><span>In 2020, 11.8% of northern George VI ice shelf was covered by supraglacial lakes, and it has been speculated that this was a record high lake density. Supraglacial lakes are associated with ice shelf instability, and were implicated in the collapse of Larsen B in 2002, where ~10% lake density was recorded. Here we use optical satellite imagery from Sentinel-2 and Landsat-1-8 in combination with recorded and modelled climate data from Fossil Bluff AWS, the MAR climate model, and the community firn model to study lakes on George VI ice shelf between 1973 and 2020. We find that the high density of lakes in 2020 was not unique, with similar events occurring five times in the study period, including a record value of 12.1% density in 1989. Furthermore, we find lake density to be controlled by a combination of high firn air content, high air temperature and a neutral southern annular mode, thus a strong melt year alone is insufficient for producing high lake densities. 2020 had record-high melt and temperature values, which suggests that this should also be a record year for lake coverage. A thicker than usual snow/firn pack in the winter prior to the 2020 melt season however, had a dampening effect on lake formation and thus lakes were less abundant than in 1989. As temperatures at this location are projected to increase in coming decades, but snowfall is expected to stay the same, future high melt years are very likely to lead to new record high lake coverage. Since supraglacial lakes are an indicator of ice shelf stability, this suggests that George VI may be rendered unstable within our lifetime.</span></p>


2020 ◽  
Author(s):  
Jennifer Arthur ◽  
Chris Stokes ◽  
Stewart Jamieson ◽  
Rachel Carr ◽  
Amber Leeson

<p>Supraglacial lakes (SGLs) enhance surface melting and their development and subsequent drainage can flex and fracture ice shelves, leading to their disintegration. However, the seasonal evolution of SGLs and their potential influence on ice shelf stability in East Antarctica remains poorly understood, despite a number of potentially vulnerable ice shelves. Using optical satellite imagery, climate reanalysis data and surface melt predicted by a regional climate model, we provide the first multi-year analysis (1974-2019) of seasonal SGL evolution on Shackleton Ice Shelf in Queen Mary Land, which is Antarctica’s northernmost remaining ice shelf. We mapped >43,000 lakes on the ice shelf and >5,000 lakes on grounded ice over the 45-year analysis period, some of which developed up to 12 km inland from the grounding line. Lakes clustered around the ice shelf grounding zone are strongly linked to the presence of blue ice and exposed rock, associated with an albedo-lowering melt-enhancing feedback. Lakes either drain supraglacially, refreeze at the end of the melt season, or shrink in-situ. Furthermore, we observe some relatively rapid (≤ 7 days) lake drainage events and infer that some lakes may be draining by hydrofracture. Our observations suggest that enhanced surface meltwater could increase the vulnerability of East Antarctic ice shelves already preconditioned for hydrofracture, namely those experiencing high surface melt rates, firn air depletion, and extensional stress regimes with minimum topographic confinement. Our results could be used to constrain simulations of current melt conditions on the ice shelf and to investigate the impact of increased surface melting on future ice shelf stability.</p>


2014 ◽  
Vol 60 (220) ◽  
pp. 205-214 ◽  
Author(s):  
Peter Kuipers Munneke ◽  
Stefan R.M. Ligtenberg ◽  
Michiel R. Van Den Broeke ◽  
David G. Vaughan

AbstractSince the 1970s, the sudden, rapid collapse of 20% of ice shelves on the Antarctic Peninsula has led to large-scale thinning and acceleration of its tributary glaciers. The leading hypothesis for the collapse of most of these ice shelves is the process of hydrofracturing, whereby a water-filled crevasse is opened by the hydrostatic pressure acting at the crevasse tip. This process has been linked to observed atmospheric warming through the increased supply of meltwater. Importantly, the low-density firn layer near the ice-shelf surface, providing a porous medium in which meltwater can percolate and refreeze, has to be filled in with refrozen meltwater first, before hydrofracturing can occur at all. Here we build upon this notion of firn air depletion as a precursor of ice-shelf collapse, by using a firn model to show that pore space was depleted in the firn layer on former ice shelves, which enabled their collapse due to hydrofracturing. Two climate scenario runs with the same model indicate that during the 21st century most Antarctic Peninsula ice shelves, and some minor ice shelves elsewhere, are more likely to become susceptible to collapse following firn air depletion. If warming continues into the 22nd century, similar depletion will become widespread on ice shelves around East Antarctica. Our model further suggests that a projected increase in snowfall will protect the Ross and Filchner–Ronne Ice Shelves from hydrofracturing in the coming two centuries.


2021 ◽  
Author(s):  
Thomas James Barnes ◽  
Amber Alexandra Leeson ◽  
Malcolm McMillan ◽  
Vincent Verjans ◽  
Jeremy Carter ◽  
...  

Abstract. High densities of supraglacial lakes have been associated with ice shelf instability and collapse. 2020 was a record melt year on George VI ice shelf with ~12 % of its northernmost portion being covered by lakes. We use 208 Sentinel-2 and Landsat-1-8 satellite images from the past 47 years, together with climate data and firn modelling, to assess the long-term presence of lakes on George VI, thus placing 2020 within a historical context. We find that the ~12 % lake coverage observed in 2020 is not unprecedented and similar to previous high lake years; events of similar magnitude occurred at least five times previously. Secondly, we find lake coverage is controlled by a combination of melting, accumulation, firn air content and firn build-up strong melting alone does not entail high lake coverage. Instead, while melting contributes positively to lake formation, we find accumulation to act as a limiting factor on the formation of lakes in response to melt, introducing new frozen material to the surface, thus cooling and storing meltwater. We find accumulation’s ability to limit melt to be further enhanced by its build-up, increasing available firn air content, and thus meltwater storage capacity. Our findings are supported by comparative analysis, showing years such as 1989 to have 55 % less melt, but similar lake coverage to 2020. Finally, we find that climate projections suggest future temperature increases, but steady snowfall in this region. Thus, in future there will be a greater propensity for higher lake densities on North George VI ice shelf, and associated risk of instability.


2020 ◽  
Vol 14 (11) ◽  
pp. 4103-4120 ◽  
Author(s):  
Jennifer F. Arthur ◽  
Chris R. Stokes ◽  
Stewart S. R. Jamieson ◽  
J. Rachel Carr ◽  
Amber A. Leeson

Abstract. Supraglacial lakes (SGLs) enhance surface melting and can flex and fracture ice shelves when they grow and subsequently drain, potentially leading to ice shelf disintegration. However, the seasonal evolution of SGLs and their influence on ice shelf stability in East Antarctica remains poorly understood, despite some potentially vulnerable ice shelves having high densities of SGLs. Using optical satellite imagery, air temperature data from climate reanalysis products and surface melt predicted by a regional climate model, we present the first long-term record (2000–2020) of seasonal SGL evolution on Shackleton Ice Shelf, which is Antarctica's northernmost remaining ice shelf and buttresses Denman Glacier, a major outlet of the East Antarctic Ice Sheet. In a typical melt season, we find hundreds of SGLs with a mean area of 0.02 km2, a mean depth of 0.96 m and a mean total meltwater volume of 7.45×106 m3. At their most extensive, SGLs cover a cumulative area of 50.7 km2 and are clustered near to the grounding line, where densities approach 0.27 km2 km−2. Here, SGL development is linked to an albedo-lowering feedback associated with katabatic winds, together with the presence of blue ice and exposed rock. Although below-average seasonal (December–January–February, DJF) temperatures are associated with below-average peaks in total SGL area and volume, warmer seasonal temperatures do not necessarily result in higher SGL areas and volumes. Rather, peaks in total SGL area and volume show a much closer correspondence with short-lived high-magnitude snowmelt events. We therefore suggest seasonal lake evolution on this ice shelf is instead more sensitive to snowmelt intensity associated with katabatic-wind-driven melting. Our analysis provides important constraints on the boundary conditions of supraglacial hydrology models and numerical simulations of ice shelf stability.


2021 ◽  
Author(s):  
Jennifer Arthur ◽  
Chris Stokes ◽  
Stewart Jamieson ◽  
Rachel Carr ◽  
Amber Leeson

<p>Surface meltwater ponding can weaken and trigger the rapid disintegration of Antarctic ice shelves which buttress the ice sheet, causing ice flow acceleration and global sea-level rise. While supraglacial lakes (SGLs) are relatively well documented during some years and selected ice shelves in Antarctica, we have little understanding of how Antarctic-wide SGL coverage varies between melt seasons. Here, we present a record of SGL evolution around the peak of the melt season on the East Antarctic Ice Sheet (EAIS) over seven consecutive years. Our findings are based on a threshold-based algorithm applied to 2175 Landsat 8 images during the month of January from 2014 to 2020. We find that EAIS-wide SGL volume fluctuates inter-annually by up to ~80%. Moreover, patterns within regions and on neighbouring ice shelves are not necessarily synchronous. Over the whole EAIS, total SGL volume was greatest in January 2017, dominated by the Amery and Roi Baudouin ice shelves, and lowest in January 2016. Excluding these two ice shelves, SGL volume peaked in January 2020. Preliminary results suggest EAIS-wide total SGL volume and extent are weakly correlated with firn model simulations of firn air content, surface melt and minimum ice lens depth predicted by the regional climate model MAR. On certain ice shelves, years with peak SGL volume correspond with minimum firn air content. This work provides important constraints for numerical ice-shelf and ice-sheet model predictions of future Antarctic surface meltwater distributions and the potential impact on ice-sheet stability and flow.  </p>


2020 ◽  
Author(s):  
J. Melchior van Wessem ◽  
Christian R. Steger ◽  
Nander Wever ◽  
Michiel R. van den Broeke

Abstract. We use two snow models, the IMAU Firn Densification Model (IMAU-FDM) and SNOWPACK, to model firn characteristics in the Antarctic Peninsula (AP). We force these models with mass and energy fluxes from the Regional Atmospheric Climate MOdel (RACMO2.3p2) to construct a 1979–2016 climatology of AP firn density, temperature and liquid water content. A comparison with 75 snow temperature observations at 10 m depth and with density from 11 firn cores, suggests that both snow models perform adequately. In this study, we focus on the detection of so-called perennial firn aquifers (PFAs), that are formed when surface meltwater percolates into the firnpack in summer, is then buried by snowfall, and does not refreeze during the following winter. In 941 model grid points, covering ~ 28,000 km2, PFAs existed for at least one year in the simulated period, most notably in the western AP. At these locations, surface meltwater production exceeds 150 to 300 mm w.e. yr−1, with accumulation at least an order of magnitude larger. Most pronounced and widespread are PFAs modelled on and around Wilkins ice shelf. Here, both meltwater production and accumulation rates are sufficiently high to cause PFA formation in most years in the 1979–2016 period, covering a large part of the ice shelf. Other notable PFA locations are Wordie ice shelf, an ice shelf that has almost completely disappeared in recent decades, and the relatively warm northwestern mountain ranges of Palmer Land, where accumulations rates can be extremely large and PFAs are formed frequently. We find that not only the magnitude of melt and accumulation is important, but also the timing. If large accumulation events occur in the months following an above average summer melt event, this favours PFA formation in that year. Finally, we find that most PFAs are predicted near the grounding lines of the (former) Prince Gustav, Wilkins and Wordie ice shelves. This highlights the need to further investigate how PFAs may impact ice shelf disintegration events, in a similar way as supraglacial lakes do.


Sign in / Sign up

Export Citation Format

Share Document