scholarly journals Moderate mass loss of Kanchenjunga Glacier in the eastern Nepal Himalaya since 1975 revealed by Hexagon KH-9 and ALOS satellite Imageries

Author(s):  
Damodar Lamsal ◽  
Koji Fujita ◽  
Akiko Sakai

Abstract. This study presents the geodetic mass balance of Kanchenjunga Glacier, a heavily debris-covered glacier, in the easternmost Nepal Himalaya between 1975 and 2010 using high-resolution (5-m) digital elevation models (DEMs) generated from Hexagon KH-9 and ALOS PRISM stereo-images. Glacier velocities are also calculated using a feature tracking method with two ALOS ortho-images taken in 2010. The difference between the two DEMs shows the rate of elevation change of the glacier, considerable surface lowering across the debris-covered area, and slight thickening in the accumulation area between 1975 and 2010. The velocity throughout the debris-covered area is slow, which stands in contrast with the faster velocity in the lower accumulation area. The rates of elevation change positively correlate with the elevation along the debris-free part, while they negatively correlate with elevation over the debris-covered part, which may result from the distribution of debris thickness. The rate of elevation change also positively correlates with the glacier velocity, whereas no correlation is found with slope and gradient of flow speed. Significant surface lowering is observed at supraglacial ponds, though the ponds should have short life spans. The geodetic mass balance of Kanchenjunga Glacier for the period of 1975–2010 (–0.14 ± 0.12 m w.e. a–1) is considerably less negative than those estimated for Khumbu Glacier (–0.27 m w.e. a–1) in the neighbouring Khumbu region. Disparities in the density of supraglacial ponds and the area contributions of accumulation and debris-covered areas may be principal causes of the difference in geodetic mass balance between the two glaciers.

2017 ◽  
Vol 11 (6) ◽  
pp. 2815-2827 ◽  
Author(s):  
Damodar Lamsal ◽  
Koji Fujita ◽  
Akiko Sakai

Abstract. This study presents the geodetic mass balance of Kanchenjunga Glacier, one of the largest debris-covered glaciers in the easternmost Nepal Himalaya, which possesses a negative mass balance of −0.18 ± 0.17 m w.e. a−1 for the 1975–2010 study period, estimated using digital elevation models (DEMs) generated from Hexagon KH-9 and ALOS PRISM stereo images. Accurate DEMs, with a relative uncertainty of ±5.5 m, were generated from the intensive and manual editing of triangulated irregular network (TIN) models on a stereo MirrorTM/3D Monitor. The glacier ice-flow velocity field was also calculated using a feature-tracking method that was applied to two ALOS orthoimages taken in 2010. The elevation differences between the two DEMs highlight considerable surface lowering across the debris-covered area, and a slight thickening in the accumulation area of Kanchenjunga Glacier between 1975 and 2010. The magnitude and gradient of surface lowering are similar among the six glacier tributaries, even though they are situated at different elevations, which may reflect variations in the ice-flow velocity field. The pattern of surface lowering correlates well with the ice-flow velocity field over the debris-covered portion of the main tributary, suggesting that the glacier dynamics significantly affect surface lowering by altering the emergence velocity along the glacier, particularly in the compressive ablation area. Surface-lowering patterns partially correspond to the supraglacial pond area fraction of the glacier, with enhanced surface lowering observed in areas that possess a larger pond area fraction. These findings support the hypothesis that supraglacial ponds may intensify ice wastage and play a key role in the heterogeneous surface lowering of debris-covered glaciers. The estimated mass loss of Kanchenjunga Glacier is moderate compared with other debris-covered glaciers in neighboring Himalayan regions, which may be due to the lower pond area fraction of Kanchenjunga Glacier relative to other glaciers.


2019 ◽  
Vol 13 (9) ◽  
pp. 2511-2535 ◽  
Author(s):  
Wael Abdel Jaber ◽  
Helmut Rott ◽  
Dana Floricioiu ◽  
Jan Wuite ◽  
Nuno Miranda

Abstract. The northern and southern Patagonian ice fields (NPI and SPI) have been subject to accelerated retreat during the last decades, with considerable variability in magnitude and timing among individual glaciers. We derive spatially detailed maps of surface elevation change (SEC) of NPI and SPI from bistatic synthetic aperture radar (SAR) interferometry data of the Shuttle Radar Topography Mission (SRTM) and TerraSAR-X add-on for Digital Elevation Measurements (TanDEM-X) for two epochs, 2000–2012 and 2012–2016, and provide data on changes in surface elevation and ice volume for the individual glaciers and the ice fields at large. We apply advanced TanDEM-X processing techniques allowing us to cover 90 % and 95 % of the area of NPI and 97 % and 98 % of SPI for the two epochs, respectively. Particular attention is paid to precisely co-registering the digital elevation models (DEMs), accounting for possible effects of radar signal penetration through backscatter analysis and correcting for seasonality biases in case of deviations in repeat DEM coverage from full annual time spans. The results show a different temporal trend between the two ice fields and reveal a heterogeneous spatial pattern of SEC and mass balance caused by different sensitivities with respect to direct climatic forcing and ice flow dynamics of individual glaciers. The estimated volume change rates for NPI are -4.26±0.20 km3 a−1 for epoch 1 and -5.60±0.74 km3 a−1 for epoch 2, while for SPI these are -14.87±0.52 km3 a−1 for epoch 1 and -11.86±1.99 km3 a−1 for epoch 2. This corresponds for both ice fields to an eustatic sea level rise of 0.048±0.002 mm a−1 for epoch 1 and 0.043±0.005 mm a−1 for epoch 2. On SPI the spatial pattern of surface elevation change is more complex than on NPI and the temporal trend is less uniform. On terminus sections of the main calving glaciers of SPI, temporal variations in flow velocities are a main factor for differences in SEC between the two epochs. Striking differences are observed even on adjoining glaciers, such as Upsala Glacier, with decreasing mass losses associated with slowdown of flow velocity, contrasting with acceleration and increase in mass losses on Viedma Glacier.


2018 ◽  
Vol 64 (248) ◽  
pp. 917-931 ◽  
Author(s):  
RUBÉN BASANTES-SERRANO ◽  
ANTOINE RABATEL ◽  
CHRISTIAN VINCENT ◽  
PASCAL SIRGUEY

ABSTRACTUnderstanding the effects of climate on glaciers requires precise estimates of ice volume change over several decades. This is achieved by the geodetic mass balance computed by two means: (1) the digital elevation model (DEM) comparison (SeqDEM) allows measurements over the entire glacier, however the low contrast over glacierized areas is an issue for the DEM generation through the photogrammetric techniques and (2) the profiling method (SePM) is a faster alternative but fails to capture the spatial variability of elevation changes. We present a new framework (SSD) that relies upon the spatial variability of the elevation change to densify a sampling network to optimize the surface-elevation change quantification. Our method was tested in two small glaciers over different periods. We conclude that the SePM overestimates the elevation change by ~20% with a mean difference of ~1.00 m (root mean square error (RMSE) = ~3.00 m) compared with results from the SeqDEM method. A variogram analysis of the elevation changes showed a mean difference of <0.10 m (RMSE = ~2.40 m) with SSD approach. A final assessment on the largest glacier in the French Alps confirms the high potential of our method to compute the geodetic mass balance, without going through the generation of a full-density DEM, but with a similar accuracy than the SeqDEM approach.


2010 ◽  
Vol 4 (3) ◽  
pp. 1151-1194
Author(s):  
A. Fischer

Abstract. Glacier mass balance is measured with the direct or the geodetic method. In this study, the geodetic mass balances of six Austrian glaciers in 19 periods between 1953 and 2006 are compared to the direct mass balances in the same periods. The mean annual geodetic mass balance for all periods is −0.5 m w.e./year. The mean difference between the geodetic and the direct data is −0.7 m w.e., the minimum −7.3 m w.e. and the maximum 5.6 m w.e. The accuracy of geodetic mass balance resulting from the accuracy of the DEMs ranges from 2 m w.e. for photogrammetric data to 0.002 m w.e. for LIDAR data. Basal melt, seasonal snow cover and density changes of the surface layer contribute up to 0.7 m w.e. for the period of 10 years to the difference to the direct method. The characteristics of published data of Griesgletscher, Gulkana Glacier, Lemon Creek glacier, South Cascade, Storbreen, Storglaciären, and Zongo Glacier is similar to these Austrian glaciers. For 26 analyzed periods with an average length of 18 years the mean difference between the geodetic and the direct data is −0.4 m w.e., the minimum −7.2 m w.e. and the maximum 3.6 m w.e. Longer periods between the acquisition of the DEMs do not necessarily result in a higher accuracy of the geodetic mass balance. Specific glaciers show specific trends of the difference between the direct and the geodetic data according to their type and state. In conclusion, geodetic and direct mass balance data are complementary, but differ systematically.


2019 ◽  
Vol 65 (252) ◽  
pp. 565-579 ◽  
Author(s):  
WILLIAM KOCHTITZKY ◽  
HESTER JISKOOT ◽  
LUKE COPLAND ◽  
ELLYN ENDERLIN ◽  
ROBERT MCNABB ◽  
...  

ABSTRACTDonjek Glacier has an unusually short and regular surge cycle, with eight surges identified since 1935 from aerial photographs and satellite imagery with a ~12 year repeat interval and ~2 year active phase. Recent surges occurred during a period of long-term negative mass balance and cumulative terminus retreat of 2.5 km since 1874. In contrast to previous work, we find that the constriction where the valley narrows and bedrock lithology changes, 21 km from the terminus, represents the upper limit of surging, with negligible surface speed or elevation change up-glacier from this location. This positions the entire surge-type portion of the glacier in the ablation zone. The constriction geometry does not act as the dynamic balance line, which we consistently find at 8 km from the glacier terminus. During the 2012–2014 surge event, the average lowering rate in the lowest 21 km of the glacier was 9.6 m a−1, while during quiescence it was 1.0 m a−1. Due to reservoir zone refilling, the ablation zone has a positive geodetic balance in years immediately following a surge event. An active surge phase can result in a strongly negative geodetic mass balance over the surge-type portion of the glacier.


2015 ◽  
Vol 9 (2) ◽  
pp. 525-540 ◽  
Author(s):  
M. Fischer ◽  
M. Huss ◽  
M. Hoelzle

Abstract. Since the mid-1980s, glaciers in the European Alps have shown widespread and accelerating mass losses. This article presents glacier-specific changes in surface elevation, volume and mass balance for all glaciers in the Swiss Alps from 1980 to 2010. Together with glacier outlines from the 1973 inventory, the DHM25 Level 1 digital elevation models (DEMs) for which the source data over glacierized areas were acquired from 1961 to 1991 are compared to the swissALTI3D DEMs from 2008 to 2011 combined with the new Swiss Glacier Inventory SGI2010. Due to the significant differences in acquisition dates of the source data used, mass changes are temporally homogenized to directly compare individual glaciers or glacierized catchments. Along with an in-depth accuracy assessment, results are validated against volume changes from independent photogrammetrically derived DEMs of single glaciers. Observed volume changes are largest between 2700 and 2800 m a.s.l. and remarkable even above 3500 m a.s.l. The mean geodetic mass balance is −0.62 ± 0.07 m w.e. yr−1 for the entire Swiss Alps over the reference period 1980–2010. For the main hydrological catchments, it ranges from −0.52 to −1.07 m w.e. yr−1. The overall volume loss calculated from the DEM differencing is −22.51 ± 1.76 km3.


2011 ◽  
Vol 5 (1) ◽  
pp. 565-604 ◽  
Author(s):  
A. Fischer ◽  
H. Schneider ◽  
G. Merkel ◽  
R. Sailer

Abstract. Very accurate airborne laserscanning (ALS) elevation data was used to calculate the annual volume changes for Hintereisferner and Kesselwandferner in the Ötztal Alps, Austria for 2001/2002–2008/2009. The comparison of the altitude of 51 recently GPS surveyed ground control points showed that the accuracy of the ALS DEMs is better than 0.3 m. The geodetic mass balance was calculated from the volume change using detailed maps of the firn cover and applying corrections for the seasonal snow cover. The maximum snow height at the time of the elevation data flight was 0.5 m averaged over the glacier surface. The volume change data was compared to in situ mass balance data for the total area and at the stakes. For the total period of 8 yr, the difference between the geodetic and the direct mass balance is 2.398 m w.e. on Hintereisferner and 1.380 m w.e. on Kesselwandferner, corresponding to about two times the mean annual mass balance. The vertical ice flow velocity was measured and found to be on the same order of magnitude as the mass balance at KWF. This is an indicator that volume change data does not allow the calculation of ablation or accumulation rates without detailed measurements or models of the vertical ice flow velocity. Therefore, only direct mass balance data allow process studies or investigation of the climatic controls of the resulting mass changes.


2019 ◽  
Author(s):  
Ben M. Pelto ◽  
Brian Menounos ◽  
Shawn J. Marshall

Abstract. Seasonal measurements of glacier mass balance provide insight into the relation between climate forcing and glacier change. To evaluate the feasibility of using remotely-sensed methods to assess seasonal balance we completed tandem airborne laser scanning surveys (ALS) and field-based glaciological measurements over a four-year period for six alpine glaciers that lie in Columbia and Rocky Mountains, near the headwaters of the Columbia River, British Columbia, Canada. We calculated annual geodetic balance using co-registered late-summer digital elevation models (DEMs), and distributed estimates of density based on surface classification of ice, snow and firn surfaces. Winter balance was derived using co-registered late-summer and spring DEMs, and density measurements from regional snow course observations and our glaciological measurements. Geodetic summer balance was calculated as the difference between winter and annual balance. Winter mass balance from our glaciological observations averaged 1.95 ± 0.09 m w.e., 4 % greater than those derived from geodetic surveys. Average glaciological summer and annual balance were also 4 % greater than our geodetic estimates. We find that distributing snow, firn and ice density based on surface classification has a greater influence on geodetic annual mass change than the density values themselves. Our results demonstrate that accurate assessments of seasonal mass change can be produced using airborne ALS over a series of glaciers spanning several mountain ranges. Such agreement over multiple seasons, years, and glaciers demonstrates the ability of high-resolution geodetic methods to increase the number of glaciers where seasonal mass balance can be reliably measured.


2012 ◽  
Vol 58 (210) ◽  
pp. 648-656 ◽  
Author(s):  
Takayuki Nuimura ◽  
Koji Fujita ◽  
Satoru Yamaguchi ◽  
Rishi R. Sharma

AbstractDue to remoteness and high altitude, only a few ground-based glacier change studies are available in high-mountain areas in the Himalaya. However, digital elevation models based on remotely sensed data (RS-DEMs) provide feasible opportunities to evaluate how fast Himalayan glaciers are changing. Here we compute elevation changes in glacier surface (total area 183.3 km2) in the Khumbu region, Nepal Himalaya, for the period 1992-2008 using multitemporal RS-DEMs and a map-derived DEM calibrated with differential GPS survey data in 2007. Elevation change is calculated by generating a weighted least-squares linear regression model. Our method enables us to provide the distribution of uncertainty of the elevation change. Debris-covered areas show large lowering rates. The spatial distribution of elevation change shows that the different wastage features of the debris-covered glaciers depend on their scale, slope and the existence of glacial lakes. The elevation changes of glaciers in the eastern Khumbu region are in line with previous studies. The regional average mass balance of -0.40 ± 0.25 m w.e.a-1 for the period 1992-2008 is consistent with a global value of about -0.55 m w.e. a-1 for the period 1996-2005.


2011 ◽  
Vol 5 (1) ◽  
pp. 107-124 ◽  
Author(s):  
A. Fischer

Abstract. The geodetic mass balances of six Austrian glaciers over 19 periods between 1953 and 2006 are compared to the direct mass balances over the same periods. For two glaciers, Hintereisferner and Kesselwandferner, case studies showing possible reasons for discrepancies between the geodetic and the direct mass balance are presented. The mean annual geodetic mass balance for all periods is −0.5 m w.e. a−1, the mean annual direct mass balance −0.4 m w.e. a−1. The mean cumulative difference is −0.6 m w.e., the minimum −7.3 m w.e., and the maximum 5.6 m w.e. The accuracy of geodetic mass balance may depend on the accuracy of the DEMs, which ranges from 2 m w.e. for photogrammetric data to 0.02 m w.e. for airborne laser scanning (LiDAR) data. Basal melt, seasonal snow cover, and density changes of the surface layer also contribute up to 0.7 m w.e. to the difference between the two methods over the investigated period of 10 yr. On Hintereisferner, the fraction of area covered by snow or firn has been changing within 1953–2006. The accumulation area is not identical with the firn area, and both are not coincident with areas of volume gain. Longer periods between the acquisition of the DEMs do not necessarily result in a higher accuracy of the geodetic mass balance. Trends in the difference between the direct and the geodetic data vary from glacier to glacier and can differ systematically for specific glaciers under specific types of climate forcing. Ultimately, geodetic and direct mass balance data are complementary, and great care must be taken when attempting to combine them.


Sign in / Sign up

Export Citation Format

Share Document