scholarly journals Reconstruction of the Greenland Ice Sheet surface mass balance and the spatiotemporal distribution of freshwater runoff from Greenland to surrounding seas

Author(s):  
Sebastian H. Mernild ◽  
Glen E. Liston ◽  
Andrew P. Beckerman ◽  
Jacob C. Yde

Abstract. Knowledge about variations in runoff from Greenland to adjacent fjords and seas is important for the hydrochemistry and ocean research communities to understand the link between terrestrial and marine Arctic environments. Here, we simulate the Greenland Ice Sheet (GrIS) surface mass balance (SMB), including refreezing and retention, and runoff together with catchment-scale runoff from the entire Greenland landmass (n = 3,272 simulated catchments) throughout the 35-year period 1979–2014. SnowModel/HydroFlow was applied at 3-h intervals to resolve the diurnal cycle and at 5-km horizontal grid increments using ERA-Interim (ERA-I) reanalysis atmospheric forcing. Simulated SMB was low compared to earlier studies, whereas the GrIS surface conditions and precipitation were similar. Variations in meteorological and surface ice and snow cover conditions influenced the seasonal variability in simulated catchment runoff; variations in the GrIS internal drainage system were assumed negligible and a time-invariant digital elevation model was applied. Approximately 80 % of all catchments showed increasing runoff trends over the 35 years, with on average relatively high and low catchment-scale runoff from the SW and N parts of Greenland, respectively. Outputs from an Empirical Orthogonal Function (EOF) analysis were combined with cross-correlations indicating a direct link (zero lag time) between modeled catchment-scale runoff and variations in the large-scale atmospheric circulation indices North Atlantic Oscillation (NAO) and Atlantic Multidecadal Oscillation (AMO). This suggests that natural variabilities in AMO and NAO constitute major controls on catchment-scale runoff variations in Greenland.

2018 ◽  
Author(s):  
Leonardus van Kampenhout ◽  
Alan M. Rhoades ◽  
Adam R. Herrington ◽  
Colin M. Zarzycki ◽  
Jan T. M. Lenaerts ◽  
...  

Abstract. In this study, the resolution dependence of the simulated Greenland Ice Sheet surface mass balance in the variable-resolution Community Earth System Model (VR-CESM) is investigated. Coupled atmosphere-land simulations are performed on three regionally refined grids over Greenland at 1° (~111 km), 0.5°(~55 km), and 0.25° (~28 km), maintaining a quasi-uniform resolution of 1° (~111 km) over the rest of the globe. The SMB in the accumulation zone is significantly improved compared to airborne radar and in-situ observations, with a general wetting at the margins and a drying in the interior GrIS. Total precipitation decreases with resolution, which is in line with best-available regional climate model results. In the ablation zone, VR-CESM starts developing a positive SMB bias in some locations. Potential driving mechanisms are proposed, amongst which are diversions in large scale circulation, changes in cloud cover, and changes in summer snowfall. Overall, our results demonstrate that VR-CESM is a viable new tool in the cryospheric sciences and can be used to dynamically downscale future scenarios and/or be interactively coupled to dynamical ice sheet models.


2018 ◽  
Vol 12 (4) ◽  
pp. 1433-1460 ◽  
Author(s):  
Heiko Goelzer ◽  
Sophie Nowicki ◽  
Tamsin Edwards ◽  
Matthew Beckley ◽  
Ayako Abe-Ouchi ◽  
...  

Abstract. Earlier large-scale Greenland ice sheet sea-level projections (e.g. those run during the ice2sea and SeaRISE initiatives) have shown that ice sheet initial conditions have a large effect on the projections and give rise to important uncertainties. The goal of this initMIP-Greenland intercomparison exercise is to compare, evaluate, and improve the initialisation techniques used in the ice sheet modelling community and to estimate the associated uncertainties in modelled mass changes. initMIP-Greenland is the first in a series of ice sheet model intercomparison activities within ISMIP6 (the Ice Sheet Model Intercomparison Project for CMIP6), which is the primary activity within the Coupled Model Intercomparison Project Phase 6 (CMIP6) focusing on the ice sheets. Two experiments for the large-scale Greenland ice sheet have been designed to allow intercomparison between participating models of (1) the initial present-day state of the ice sheet and (2) the response in two idealised forward experiments. The forward experiments serve to evaluate the initialisation in terms of model drift (forward run without additional forcing) and in response to a large perturbation (prescribed surface mass balance anomaly); they should not be interpreted as sea-level projections. We present and discuss results that highlight the diversity of data sets, boundary conditions, and initialisation techniques used in the community to generate initial states of the Greenland ice sheet. We find good agreement across the ensemble for the dynamic response to surface mass balance changes in areas where the simulated ice sheets overlap but differences arising from the initial size of the ice sheet. The model drift in the control experiment is reduced for models that participated in earlier intercomparison exercises.


2013 ◽  
Vol 35 (5) ◽  
pp. 1155-1174 ◽  
Author(s):  
J. H. van Angelen ◽  
M. R. van den Broeke ◽  
B. Wouters ◽  
J. T. M. Lenaerts

2018 ◽  
Vol 12 (10) ◽  
pp. 3097-3121 ◽  
Author(s):  
Reinhard Calov ◽  
Sebastian Beyer ◽  
Ralf Greve ◽  
Johanna Beckmann ◽  
Matteo Willeit ◽  
...  

Abstract. We introduce the coupled model of the Greenland glacial system IGLOO 1.0, including the polythermal ice sheet model SICOPOLIS (version 3.3) with hybrid dynamics, the model of basal hydrology HYDRO and a parameterization of submarine melt for marine-terminated outlet glaciers. The aim of this glacial system model is to gain a better understanding of the processes important for the future contribution of the Greenland ice sheet to sea level rise under future climate change scenarios. The ice sheet is initialized via a relaxation towards observed surface elevation, imposing the palaeo-surface temperature over the last glacial cycle. As a present-day reference, we use the 1961–1990 standard climatology derived from simulations of the regional atmosphere model MAR with ERA reanalysis boundary conditions. For the palaeo-part of the spin-up, we add the temperature anomaly derived from the GRIP ice core to the years 1961–1990 average surface temperature field. For our projections, we apply surface temperature and surface mass balance anomalies derived from RCP 4.5 and RCP 8.5 scenarios created by MAR with boundary conditions from simulations with three CMIP5 models. The hybrid ice sheet model is fully coupled with the model of basal hydrology. With this model and the MAR scenarios, we perform simulations to estimate the contribution of the Greenland ice sheet to future sea level rise until the end of the 21st and 23rd centuries. Further on, the impact of elevation–surface mass balance feedback, introduced via the MAR data, on future sea level rise is inspected. In our projections, we found the Greenland ice sheet to contribute between 1.9 and 13.0 cm to global sea level rise until the year 2100 and between 3.5 and 76.4 cm until the year 2300, including our simulated additional sea level rise due to elevation–surface mass balance feedback. Translated into additional sea level rise, the strength of this feedback in the year 2100 varies from 0.4 to 1.7 cm, and in the year 2300 it ranges from 1.7 to 21.8 cm. Additionally, taking the Helheim and Store glaciers as examples, we investigate the role of ocean warming and surface runoff change for the melting of outlet glaciers. It shows that ocean temperature and subglacial discharge are about equally important for the melting of the examined outlet glaciers.


2018 ◽  
Vol 12 (9) ◽  
pp. 2981-2999 ◽  
Author(s):  
Jiangjun Ran ◽  
Miren Vizcaino ◽  
Pavel Ditmar ◽  
Michiel R. van den Broeke ◽  
Twila Moon ◽  
...  

Abstract. The Greenland Ice Sheet (GrIS) is currently losing ice mass. In order to accurately predict future sea level rise, the mechanisms driving the observed mass loss must be better understood. Here, we combine data from the satellite gravimetry mission Gravity Recovery and Climate Experiment (GRACE), surface mass balance (SMB) output of the Regional Atmospheric Climate Model v. 2 (RACMO2), and ice discharge estimates to analyze the mass budget of Greenland at various temporal and spatial scales. We find that the mean rate of mass variations in Greenland observed by GRACE was between −277 and −269 Gt yr−1 in 2003–2012. This estimate is consistent with the sum (i.e., -304±126 Gt yr−1) of individual contributions – surface mass balance (SMB, 216±122 Gt yr−1) and ice discharge (520±31 Gt yr−1) – and with previous studies. We further identify a seasonal mass anomaly throughout the GRACE record that peaks in July at 80–120 Gt and which we interpret to be due to a combination of englacial and subglacial water storage generated by summer surface melting. The robustness of this estimate is demonstrated by using both different GRACE-based solutions and different meltwater runoff estimates (namely, RACMO2.3, SNOWPACK, and MAR3.9). Meltwater storage in the ice sheet occurs primarily due to storage in the high-accumulation regions of the southeast and northwest parts of Greenland. Analysis of seasonal variations in outlet glacier discharge shows that the contribution of ice discharge to the observed signal is minor (at the level of only a few gigatonnes) and does not explain the seasonal differences between the total mass and SMB signals. With the improved quantification of meltwater storage at the seasonal scale, we highlight its importance for understanding glacio-hydrological processes and their contributions to the ice sheet mass variability.


2008 ◽  
Vol 2 (2) ◽  
pp. 117-129 ◽  
Author(s):  
X. Fettweis ◽  
E. Hanna ◽  
H. Gallée ◽  
P. Huybrechts ◽  
M. Erpicum

Abstract. Results from a regional climate simulation (1970–2006) over the Greenland ice sheet (GrIS) reveals that more than 97% of the interannual variability of the modelled Surface Mass Balance (SMB) can be explained by the GrIS summer temperature anomaly and the GrIS annual precipitation anomaly. This multiple regression is then used to empirically estimate the GrIS SMB since 1900 from climatological time series. The projected SMB changes in the 21st century are investigated with the set of simulations performed with atmosphere-ocean general circulation models (AOGCMs) of the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR4). These estimates show that the high surface mass loss rates of recent years are not unprecedented in the GrIS history of the last hundred years. The minimum SMB rate seems to have occurred earlier in the 1930s and corresponds to a zero SMB rate. The AOGCMs project that the SMB rate of the 1930s would be common at the end of 2100. The temperature would be higher than in the 1930s but the increase of accumulation in the 21st century would partly offset the acceleration of surface melt due to the temperature increase. However, these assumptions are based on an empirical multiple regression only validated for recent/current climatic conditions, and the accuracy and time homogeneity of the data sets and AOGCM results used in these estimations constitute a large uncertainty.


2016 ◽  
Vol 10 (5) ◽  
pp. 2361-2377 ◽  
Author(s):  
Brice Noël ◽  
Willem Jan van de Berg ◽  
Horst Machguth ◽  
Stef Lhermitte ◽  
Ian Howat ◽  
...  

Abstract. This study presents a data set of daily, 1 km resolution Greenland ice sheet (GrIS) surface mass balance (SMB) covering the period 1958–2015. Applying corrections for elevation, bare ice albedo and accumulation bias, the high-resolution product is statistically downscaled from the native daily output of the polar regional climate model RACMO2.3 at 11 km. The data set includes all individual SMB components projected to a down-sampled version of the Greenland Ice Mapping Project (GIMP) digital elevation model and ice mask. The 1 km mask better resolves narrow ablation zones, valley glaciers, fjords and disconnected ice caps. Relative to the 11 km product, the more detailed representation of isolated glaciated areas leads to increased precipitation over the southeastern GrIS. In addition, the downscaled product shows a significant increase in runoff owing to better resolved low-lying marginal glaciated regions. The combined corrections for elevation and bare ice albedo markedly improve model agreement with a newly compiled data set of ablation measurements.


Water ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1847 ◽  
Author(s):  
Fang Zou ◽  
Robert Tenzer ◽  
Hok Fok ◽  
Janet Nichol

The Greenland Ice Sheet (GrIS) is losing mass at a rate that represents a major contribution to global sea-level rise in recent decades. In this study, we use the Gravity Recovery and Climate Experiment (GRACE) data to retrieve the time series variations of the GrIS from April 2002 to June 2017. We also estimate the mass balance from the RACMO2.3 and ice discharge data in order to obtain a comparative analysis and cross-validation. A detailed analysis of long-term trend and seasonal and inter-annual changes in the GrIS is implemented by GRACE and surface mass balance (SMB) modeling. The results indicate a decrease of −267.77 ± 8.68 Gt/yr of the GrIS over the 16-year period. There is a rapid decline from 2002 to 2008, which accelerated from 2009 to 2012 before declining relatively slowly from 2013 to 2017. The mass change inland is significantly smaller than that detected along coastal regions, especially in the southeastern, southwestern, and northwestern regions. The mass balance estimates from GRACE and SMB minus ice discharge (SMB-D) are very consistent. The ice discharge manifests itself mostly as a long-term trend, whereas seasonal mass variations are largely attributed to surface mass processes. The GrIS mass changes are mostly attributed to mass loss during summer. Summer mass changes are highly correlated with climate changes.


Sign in / Sign up

Export Citation Format

Share Document