scholarly journals Clouds damp the impacts of Polar sea ice loss

2019 ◽  
Author(s):  
Ramdane Alkama ◽  
Alessandro Cescatti ◽  
Patrick C. Taylor ◽  
Lorea Garcia-San Martin ◽  
Herve Douville ◽  
...  

Abstract. Clouds plays an important role on the climate system through two main contrasting effects: (1) cooling the Earth by reflecting to space part of incoming solar radiation; (2) warming the surface by reducing the Earth’s loss of thermal energy to space. Recently, scientists have paid more attention to the warming role of clouds because of the acceleration of Arctic sea ice melting and because of recent studies that did not find any response of cloud cover fraction to reduced sea ice in summer. On the contrary, with this work based on satellite CERES data and 32 CMIP5 climate models, we reveal that the cooling role of clouds is dominant. Indeed, cloud dynamic occurring in combination with sea-ice melting plays an important cooling effect by altering the surface energy budget in an apparently contradicting way: years with less sea ice are also those that show an increase of the radiative energy reflected back to space by clouds. An increase in absorbed solar radiation when sea ice retreats (surface albedo change) explains 66 ± 2 % of the observed signal. The remaining 34 ± 1 % are due to the increase in cloud cover/thickness when sea ice retreat and associated reflection to space. This interplay between clouds and sea ice reduces by half the increase of net radiation at the surface that follows the sea-ice retreat, therefore damping the impact of polar sea ice loss. We further highlight how this process is mis-represented in some climate models.

2016 ◽  
Vol 29 (24) ◽  
pp. 9179-9188 ◽  
Author(s):  
Erica Rosenblum ◽  
Ian Eisenman

Abstract The downward trend in Arctic sea ice extent is one of the most dramatic signals of climate change during recent decades. Comprehensive climate models have struggled to reproduce this trend, typically simulating a slower rate of sea ice retreat than has been observed. However, this bias has been widely noted to have decreased in models participating in phase 5 of the Coupled Model Intercomparison Project (CMIP5) compared with the previous generation of models (CMIP3). Here simulations are examined from both CMIP3 and CMIP5. It is found that simulated historical sea ice trends are influenced by volcanic forcing, which was included in all of the CMIP5 models but in only about half of the CMIP3 models. The volcanic forcing causes temporary simulated cooling in the 1980s and 1990s, which contributes to raising the simulated 1979–2013 global-mean surface temperature trends to values substantially larger than observed. It is shown that this warming bias is accompanied by an enhanced rate of Arctic sea ice retreat and hence a simulated sea ice trend that is closer to the observed value, which is consistent with previous findings of an approximately linear relationship between sea ice extent and global-mean surface temperature. Both generations of climate models are found to simulate Arctic sea ice that is substantially less sensitive to global warming than has been observed. The results imply that much of the difference in Arctic sea ice trends between CMIP3 and CMIP5 occurred because of the inclusion of volcanic forcing, rather than improved sea ice physics or model resolution.


2007 ◽  
Vol 20 (16) ◽  
pp. 4160-4171 ◽  
Author(s):  
A. Levermann ◽  
J. Mignot ◽  
S. Nawrath ◽  
S. Rahmstorf

Abstract An increase in atmospheric CO2 concentration and the resulting global warming are typically associated with a weakening of the thermohaline circulation (THC) in model scenarios. For the models participating in the Coupled Model Intercomparison Project (CMIP), this weakening shows a significant (r = 0.62) dependence on the initial THC strength; it is stronger for initially strong overturning. The authors propose a physical mechanism for this phenomenon based on an analysis of additional simulations with the coupled climate models CLIMBER-2 and CLIMBER-3α. The mechanism is based on the fact that sea ice cover greatly reduces heat loss from the ocean. The extent of sea ice is strongly influenced by the near-surface atmospheric temperature (SAT) in the North Atlantic but also by the strength of the THC itself, which transports heat to the convection sites. Consequently, sea ice tends to extend farther south for weaker THC. Initially larger sea ice cover responds more strongly to atmospheric warming; thus, sea ice retreats more strongly for an initially weaker THC. This sea ice retreat tends to strengthen (i.e., stabilize) the THC because the sea ice retreat allows more oceanic heat loss. This stabilizing effect is stronger for runs with weak initial THC and extensive sea ice cover. Therefore, an initially weak THC weakens less under global warming. In contrast to preindustrial climate, sea ice melting presently plays the role of an external forcing with respect to THC stability.


2013 ◽  
Vol 40 (4) ◽  
pp. 720-726 ◽  
Author(s):  
Jinlun Zhang ◽  
Ron Lindsay ◽  
Axel Schweiger ◽  
Michael Steele

2020 ◽  
Author(s):  
Marie Sicard ◽  
Masa Kageyama ◽  
Pascale Braconnot ◽  
Sylvie Charbit

<p>The Last Interglacial (129 – 116 ka BP) is a time period with a strong orbital forcing which leads to a different seasonal and latitudinal distribution of insolation compared to the present. In particular, these changes amplify the Arctic climate seasonality. They induce warmer summers and colder winters in the high latitudes of the Northern Hemisphere. Such surface conditions favour a huge retreat of the arctic sea ice cover.<br>In this study, we try to understand how this solar radiation anomaly spreads through the surface and impacts the seasonal arctic sea ice. Using IPSL-CM6A-LR model outputs, we decompose the surface energy budget to identify the role of atmospheric and oceanic key processes beyond 60°N and its changes compared to pre-industrial. We show that solar radiation anomaly is greatly reduced when it reaches the Earth’s surface, which emphasizes the role of clouds and water vapor transport.<br>The results are also compared to other PMIP4-CMIP6 model simulations. We would like to thank PMIP participants for producing and making available their model outputs.</p>


2019 ◽  
Vol 124 (16) ◽  
pp. 9205-9221 ◽  
Author(s):  
Ruonan Zhang ◽  
Chenghu Sun ◽  
Renhe Zhang ◽  
Weijing Li ◽  
Jinqing Zuo

2017 ◽  
Vol 30 (16) ◽  
pp. 6265-6278 ◽  
Author(s):  
Erica Rosenblum ◽  
Ian Eisenman

Observations indicate that the Arctic sea ice cover is rapidly retreating while the Antarctic sea ice cover is steadily expanding. State-of-the-art climate models, by contrast, typically simulate a moderate decrease in both the Arctic and Antarctic sea ice covers. However, in each hemisphere there is a small subset of model simulations that have sea ice trends similar to the observations. Based on this, a number of recent studies have suggested that the models are consistent with the observations in each hemisphere when simulated internal climate variability is taken into account. Here sea ice changes during 1979–2013 are examined in simulations from the most recent Coupled Model Intercomparison Project (CMIP5) as well as the Community Earth System Model Large Ensemble (CESM-LE), drawing on previous work that found a close relationship in climate models between global-mean surface temperature and sea ice extent. All of the simulations with 1979–2013 Arctic sea ice retreat as fast as observations are found to have considerably more global warming than observations during this time period. Using two separate methods to estimate the sea ice retreat that would occur under the observed level of global warming in each simulation in both ensembles, it is found that simulated Arctic sea ice retreat as fast as observations would occur less than 1% of the time. This implies that the models are not consistent with the observations. In the Antarctic, simulated sea ice expansion as fast as observations is found to typically correspond with too little global warming, although these results are more equivocal. As a result, the simulations do not capture the observed asymmetry between Arctic and Antarctic sea ice trends. This suggests that the models may be getting the right sea ice trends for the wrong reasons in both polar regions.


2019 ◽  
Vol 10 (1) ◽  
pp. 121-133 ◽  
Author(s):  
Luis Gimeno-Sotelo ◽  
Raquel Nieto ◽  
Marta Vázquez ◽  
Luis Gimeno

Abstract. By considering the moisture transport for precipitation (MTP) for a target region to be the moisture that arrives in this region from its major moisture sources and which then results in precipitation in that region, we explore (i) whether the MTP from the main moisture sources for the Arctic region is linked with inter-annual fluctuations in the extent of Arctic sea ice superimposed on its decline and (ii) the role of extreme MTP events in the inter-daily change in the Arctic sea ice extent (SIE) when extreme MTP simultaneously arrives from the four main moisture regions that supply it. The results suggest (1) that ice melting at the scale of inter-annual fluctuations against the trend is favoured by an increase in moisture transport in summer, autumn, and winter and a decrease in spring and, (2) on a daily basis, extreme humidity transport increases the formation of ice in winter and decreases it in spring, summer, and autumn; in these three seasons extreme humidity transport therefore contributes to Arctic sea ice melting. These patterns differ sharply from that linked to the decline on a long-range scale, especially in summer when the opposite trend applies, as ice melt is favoured by a decrease in moisture transport for this season at this scale.


2020 ◽  
Author(s):  
Letizia Tedesco ◽  
Marcello Vichi ◽  
Enrico Scoccimarro

<p>The Arctic sea-ice decline is among the most emblematic manifestations of climate change and is occurring before we understand its ecological consequences. We investigated future changes in algal productivity combining a biogeochemical model for sympagic algae with sea-ice drivers from an ensemble of 18 CMIP5 climate models. Model projections indicate quasi-linear physical changes along latitudes but markedly nonlinear response of sympagic algae, with distinct latitudinal patterns. While snow cover thinning explains the advancement of algal blooms below 66°N, narrowing of the biological time windows yields small changes in the 66°N to 74°N band, and shifting of the ice seasons toward more favorable photoperiods drives the increase in algal production above 74°N. These diverse latitudinal responses indicate that the impact of declining sea ice on Arctic sympagic production is both large and complex, with consequent trophic and phenological cascades expected in the rest of the food web.</p>


Sign in / Sign up

Export Citation Format

Share Document