The impact of orbital forcing on the Arctic climate during the Last Interglacial simulated by the IPSL-CM6A-LR model

Author(s):  
Marie Sicard ◽  
Masa Kageyama ◽  
Pascale Braconnot ◽  
Sylvie Charbit

<p>The Last Interglacial (129 – 116 ka BP) is a time period with a strong orbital forcing which leads to a different seasonal and latitudinal distribution of insolation compared to the present. In particular, these changes amplify the Arctic climate seasonality. They induce warmer summers and colder winters in the high latitudes of the Northern Hemisphere. Such surface conditions favour a huge retreat of the arctic sea ice cover.<br>In this study, we try to understand how this solar radiation anomaly spreads through the surface and impacts the seasonal arctic sea ice. Using IPSL-CM6A-LR model outputs, we decompose the surface energy budget to identify the role of atmospheric and oceanic key processes beyond 60°N and its changes compared to pre-industrial. We show that solar radiation anomaly is greatly reduced when it reaches the Earth’s surface, which emphasizes the role of clouds and water vapor transport.<br>The results are also compared to other PMIP4-CMIP6 model simulations. We would like to thank PMIP participants for producing and making available their model outputs.</p>

2017 ◽  
Vol 31 (1) ◽  
pp. 99-114 ◽  
Author(s):  
Yuan Wang ◽  
Jonathan H. Jiang ◽  
Hui Su ◽  
Yong-Sang Choi ◽  
Lei Huang ◽  
...  

AbstractObservations show that the Arctic sea ice cover has been shrinking at an unprecedented rate since the 1970s. Even though the accumulation of greenhouse gases in the atmosphere has been closely linked with the loss of Arctic sea ice, the role of atmospheric aerosols in past and future Arctic climate change remains elusive. Using a state-of-the-art fully coupled climate model, the authors assess the equilibrium responses of the Arctic sea ice to the different aerosol emission scenarios and investigate the pathways by which aerosols impose their influence in the Arctic. These sensitivity experiments show that the impacts of aerosol perturbations on the pace of sea ice melt effectively modulate the ocean circulation and atmospheric feedbacks. Because of the contrasting evolutions of particulate pollution in the developed and developing countries since the 1970s, the opposite aerosol forcings from different midlatitude regions are nearly canceled out in the Arctic during the boreal summer, resulting in a muted aerosol effect on the recent sea ice changes. Consequently, the greenhouse forcing alone can largely explain the observed Arctic sea ice loss up to the present. In the next few decades, the projected alleviation of particulate pollution in the Northern Hemisphere can contribute up to 20% of the total Arctic sea ice loss and 0.7°C surface warming over the Arctic. The authors’ model simulations further show that aerosol microphysical effects on the Arctic clouds are the major component in the total aerosol radiative forcing over the Arctic. Compared to the aerosol-induced energy imbalance in lower latitudes outside the Arctic, the local radiative forcing by aerosol variations within the Arctic, due to either local emissions or long-range transports, is more efficient in determining the sea ice changes and Arctic climate change.


2016 ◽  
Author(s):  
R. L. Tilling ◽  
A. Ridout ◽  
A. Shepherd

Abstract. Timely observations of sea ice thickness help us to understand Arctic climate, and can support maritime activities in the Polar Regions. Although it is possible to calculate Arctic sea ice thickness using measurements acquired by CryoSat-2, the latency of the final release dataset is typically one month, due to the time required to determine precise satellite orbits. We use a new fast delivery CryoSat-2 dataset based on preliminary orbits to compute Arctic sea ice thickness in near real time (NRT), and analyse this data for one sea ice growth season from October 2014 to April 2015. We show that this NRT sea ice thickness product is of comparable accuracy to that produced using the final release CryoSat-2 data, with an average thickness difference of 5 cm, demonstrating that the satellite orbit is not a critical factor in determining sea ice freeboard. In addition, the CryoSat-2 fast delivery product also provides measurements of Arctic sea ice thickness within three days of acquisition by the satellite, and a measurement is delivered, on average, within 10, 7 and 6 km of each location in the Arctic every 2, 14 and 28 days respectively. The CryoSat-2 NRT sea ice thickness dataset provides an additional constraint for seasonal predictions of Arctic climate change, and will allow industries such as tourism and transport to navigate the polar oceans with safety and care.


2014 ◽  
Vol 14 (7) ◽  
pp. 10929-10999 ◽  
Author(s):  
R. Döscher ◽  
T. Vihma ◽  
E. Maksimovich

Abstract. The Arctic sea ice is the central and essential component of the Arctic climate system. The depletion and areal decline of the Arctic sea ice cover, observed since the 1970's, have accelerated after the millennium shift. While a relationship to global warming is evident and is underpinned statistically, the mechanisms connected to the sea ice reduction are to be explored in detail. Sea ice erodes both from the top and from the bottom. Atmosphere, sea ice and ocean processes interact in non-linear ways on various scales. Feedback mechanisms lead to an Arctic amplification of the global warming system. The amplification is both supported by the ice depletion and is at the same time accelerating the ice reduction. Knowledge of the mechanisms connected to the sea ice decline has grown during the 1990's and has deepened when the acceleration became clear in the early 2000's. Record summer sea ice extents in 2002, 2005, 2007 and 2012 provided additional information on the mechanisms. This article reviews recent progress in understanding of the sea ice decline. Processes are revisited from an atmospheric, ocean and sea ice perspective. There is strong evidence for decisive atmospheric changes being the major driver of sea ice change. Feedbacks due to reduced ice concentration, surface albedo and thickness allow for additional local atmosphere and ocean influences and self-supporting feedbacks. Large scale ocean influences on the Arctic Ocean hydrology and circulation are highly evident. Northward heat fluxes in the ocean are clearly impacting the ice margins, especially in the Atlantic sector of the Arctic. Only little indication exists for a direct decisive influence of the warming ocean on the overall sea ice cover, due to an isolating layer of cold and fresh water underneath the sea ice.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
M. A. Webster ◽  
C. Parker ◽  
L. Boisvert ◽  
R. Kwok

AbstractIdentifying the mechanisms controlling the timing and magnitude of snow accumulation on sea ice is crucial for understanding snow’s net effect on the surface energy budget and sea-ice mass balance. Here, we analyze the role of cyclone activity on the seasonal buildup of snow on Arctic sea ice using model, satellite, and in situ data over 1979–2016. On average, 44% of the variability in monthly snow accumulation was controlled by cyclone snowfall and 29% by sea-ice freeze-up. However, there were strong spatio-temporal differences. Cyclone snowfall comprised ~50% of total snowfall in the Pacific compared to 83% in the Atlantic. While cyclones are stronger in the Atlantic, Pacific snow accumulation is more sensitive to cyclone strength. These findings highlight the heterogeneity in atmosphere-snow-ice interactions across the Arctic, and emphasize the need to scrutinize mechanisms governing cyclone activity to better understand their effects on the Arctic snow-ice system with anthropogenic warming.


2016 ◽  
Vol 29 (2) ◽  
pp. 889-902 ◽  
Author(s):  
Rasmus A. Pedersen ◽  
Ivana Cvijanovic ◽  
Peter L. Langen ◽  
Bo M. Vinther

Abstract Reduction of the Arctic sea ice cover can affect the atmospheric circulation and thus impact the climate beyond the Arctic. The atmospheric response may, however, vary with the geographical location of sea ice loss. The atmospheric sensitivity to the location of sea ice loss is studied using a general circulation model in a configuration that allows combination of a prescribed sea ice cover and an active mixed layer ocean. This hybrid setup makes it possible to simulate the isolated impact of sea ice loss and provides a more complete response compared to experiments with fixed sea surface temperatures. Three investigated sea ice scenarios with ice loss in different regions all exhibit substantial near-surface warming, which peaks over the area of ice loss. The maximum warming is found during winter, delayed compared to the maximum sea ice reduction. The wintertime response of the midlatitude atmospheric circulation shows a nonuniform sensitivity to the location of sea ice reduction. While all three scenarios exhibit decreased zonal winds related to high-latitude geopotential height increases, the magnitudes and locations of the anomalies vary between the simulations. Investigation of the North Atlantic Oscillation reveals a high sensitivity to the location of the ice loss. The northern center of action exhibits clear shifts in response to the different sea ice reductions. Sea ice loss in the Atlantic and Pacific sectors of the Arctic cause westward and eastward shifts, respectively.


2020 ◽  
Vol 117 (42) ◽  
pp. 26069-26075
Author(s):  
Anne de Vernal ◽  
Claude Hillaire-Marcel ◽  
Cynthia Le Duc ◽  
Philippe Roberge ◽  
Camille Brice ◽  
...  

The impact of the ongoing anthropogenic warming on the Arctic Ocean sea ice is ascertained and closely monitored. However, its long-term fate remains an open question as its natural variability on centennial to millennial timescales is not well documented. Here, we use marine sedimentary records to reconstruct Arctic sea-ice fluctuations. Cores collected along the Lomonosov Ridge that extends across the Arctic Ocean from northern Greenland to the Laptev Sea were radiocarbon dated and analyzed for their micropaleontological and palynological contents, both bearing information on the past sea-ice cover. Results demonstrate that multiyear pack ice remained a robust feature of the western and central Lomonosov Ridge and that perennial sea ice remained present throughout the present interglacial, even during the climate optimum of the middle Holocene that globally peaked ∼6,500 y ago. In contradistinction, the southeastern Lomonosov Ridge area experienced seasonally sea-ice-free conditions, at least, sporadically, until about 4,000 y ago. They were marked by relatively high phytoplanktonic productivity and organic carbon fluxes at the seafloor resulting in low biogenic carbonate preservation. These results point to contrasted west–east surface ocean conditions in the Arctic Ocean, not unlike those of the Arctic dipole linked to the recent loss of Arctic sea ice. Hence, our data suggest that seasonally ice-free conditions in the southeastern Arctic Ocean with a dominant Arctic dipolar pattern, may be a recurrent feature under “warm world” climate.


2019 ◽  
Vol 10 (1) ◽  
pp. 121-133 ◽  
Author(s):  
Luis Gimeno-Sotelo ◽  
Raquel Nieto ◽  
Marta Vázquez ◽  
Luis Gimeno

Abstract. By considering the moisture transport for precipitation (MTP) for a target region to be the moisture that arrives in this region from its major moisture sources and which then results in precipitation in that region, we explore (i) whether the MTP from the main moisture sources for the Arctic region is linked with inter-annual fluctuations in the extent of Arctic sea ice superimposed on its decline and (ii) the role of extreme MTP events in the inter-daily change in the Arctic sea ice extent (SIE) when extreme MTP simultaneously arrives from the four main moisture regions that supply it. The results suggest (1) that ice melting at the scale of inter-annual fluctuations against the trend is favoured by an increase in moisture transport in summer, autumn, and winter and a decrease in spring and, (2) on a daily basis, extreme humidity transport increases the formation of ice in winter and decreases it in spring, summer, and autumn; in these three seasons extreme humidity transport therefore contributes to Arctic sea ice melting. These patterns differ sharply from that linked to the decline on a long-range scale, especially in summer when the opposite trend applies, as ice melt is favoured by a decrease in moisture transport for this season at this scale.


2020 ◽  
Author(s):  
H. Jakob Belter ◽  
Thomas Krumpen ◽  
Luisa von Albedyll ◽  
Tatiana A. Alekseeva ◽  
Sergei V. Frolov ◽  
...  

Abstract. Changes in Arctic sea ice thickness are the result of complex interactions of the dynamic and variable ice cover with atmosphere and ocean. Most of the sea ice exits the Arctic Ocean through Fram Strait, which is why long-term measurements of ice thickness at the end of the Transpolar Drift provide insight into the integrated signals of thermodynamic and dynamic influences along the pathways of Arctic sea ice. We present an updated time series of extensive ice thickness surveys carried out at the end of the Transpolar Drift between 2001 and 2020. Overall, we see a more than 20 % thinning of modal ice thickness since 2001. A comparison with first preliminary results from the international Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) shows that the modal summer thickness of the MOSAiC floe and its wider vicinity are consistent with measurements from previous years. By combining this unique time series with the Lagrangian sea ice tracking tool, ICETrack, and a simple thermodynamic sea ice growth model, we link the observed interannual ice thickness variability north of Fram Strait to increased drift speeds along the Transpolar Drift and the consequential variations in sea ice age and number of freezing degree days. We also show that the increased influence of upward-directed ocean heat flux in the eastern marginal ice zones, termed Atlantification, is not only responsible for sea ice thinning in and around the Laptev Sea, but also that the induced thickness anomalies persist beyond the Russian shelves and are potentially still measurable at the end of the Transpolar Drift after more than a year. With a tendency towards an even faster Transpolar Drift, winter sea ice growth will have less time to compensate the impact of Atlantification on sea ice growth in the eastern marginal ice zone, which will increasingly be felt in other parts of the sea ice covered Arctic.


2019 ◽  
Vol 1 ◽  
pp. 1-1
Author(s):  
Dawei Gui ◽  
Xiaoping Pang ◽  
Ruibo Lei ◽  
Xi Zhao ◽  
Jia Wang

<p><strong>Abstract.</strong> Increasing amounts of evidence have proven Arctic sea ice is undergoing remarkable loss. On the bright side, the Arctic sea routes are becoming increasingly accessible. In this study, the NSIDC product of sea ice motion was applied to reconstruct the northward speed of sea ice to obtain the kinematic features of the sea ice in the Arctic outflow region which specially referred to the Fram Strait and to the north of the Northeast Passage (NEP).</p><p>In the Arctic outflow region, the average southward displacement of sea ice in 2007&amp;ndash;2014 (1511&amp;thinsp;km) was more than twice the average prior to 2007 (617&amp;thinsp;km), which indicated continuous enhancement of the Transpolar Drift Stream (TDS) in comparison with previous years. In the regions to the north of the NEP, the long-term trend of northward sea ice speed in the Kara sector was +0.04&amp;thinsp;cm&amp;thinsp;s<sup>&amp;minus;1</sup>&amp;thinsp;year<sup>&amp;minus;1</sup> in spring. A significant statistical relationship was found between the NEP open period and the northward speed of the sea ice to the north of the NEP. The offshore advection of sea ice could account for the opening of sea routes by 33% and 15% in the Kara and Laptev sectors, respectively.</p><p>The atmospheric circulation indices across the TDS, i.e., the Central Arctic Index (CAI), presented more significant correlation than for the Arctic atmospheric Dipole Anomaly index with the open period of the NEP, and the CAI could explain the southward displacement of sea ice toward Fram Strait by more than 45%. The impact from the summer positive CAI reinforces the thinning and mechanical weakening of the sea ice in the NEP region, which promoted the navigability of the NEP.</p>


2021 ◽  
Author(s):  
Won-il Lim ◽  
Hyo-Seok Park ◽  
Andrew Stewart ◽  
Kyong-Hwan Seo

Abstract The ongoing Arctic warming has been pronounced in winter and has been associated with an increase in downward longwave radiation. While previous studies have demonstrated that poleward moisture flux into the Arctic strengthens downward longwave radiation, less attention has been given to the impact of the accompanying increase in snowfall. Here, utilizing state-of-the art sea ice models, we show that typical winter snowfall anomalies of 1.0 cm, accompanied by positive downward longwave radiation anomalies of ~5 W m-2 can decrease sea ice thickness by around 5 cm in the following spring over the Eurasian Seas. This basin-wide ice thinning is followed by a shrinking of summer ice extent in extreme cases. In the winter of 2016–17, anomalously strong warm/moist air transport combined with ~2.5 cm increase in snowfall decreased spring ice thickness by ~10 cm and decreased the following summer sea ice extent by 5–30%. Projected future reductions in the thickness of Arctic sea ice and snow will amplify the impact of anomalous winter snowfall events on winter sea ice growth and seasonal sea ice thickness.


Sign in / Sign up

Export Citation Format

Share Document